Spaces:
Paused
Paused
File size: 18,661 Bytes
02afb14 4f2a492 02afb14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
from typing import Dict
import webdataset as wds
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
import torchvision
from einops import rearrange
from ..util import instantiate_from_config
from datasets import load_dataset
import pytorch_lightning as pl
import copy
import csv
import cv2
import random
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
import json
import os
import webdataset as wds
import math
from torch.utils.data.distributed import DistributedSampler
# Some hacky things to make experimentation easier
def make_transform_multi_folder_data(paths, caption_files=None, **kwargs):
ds = make_multi_folder_data(paths, caption_files, **kwargs)
return TransformDataset(ds)
def make_nfp_data(base_path):
dirs = list(Path(base_path).glob("*/"))
print(f"Found {len(dirs)} folders")
print(dirs)
tforms = [transforms.Resize(512), transforms.CenterCrop(512)]
datasets = [NfpDataset(x, image_transforms=copy.copy(tforms), default_caption="A view from a train window") for x in dirs]
return torch.utils.data.ConcatDataset(datasets)
class VideoDataset(Dataset):
def __init__(self, root_dir, image_transforms, caption_file, offset=8, n=2):
self.root_dir = Path(root_dir)
self.caption_file = caption_file
self.n = n
ext = "mp4"
self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
self.offset = offset
if isinstance(image_transforms, ListConfig):
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
self.tform = image_transforms
with open(self.caption_file) as f:
reader = csv.reader(f)
rows = [row for row in reader]
self.captions = dict(rows)
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
for i in range(10):
try:
return self._load_sample(index)
except Exception:
# Not really good enough but...
print("uh oh")
def _load_sample(self, index):
n = self.n
filename = self.paths[index]
min_frame = 2*self.offset + 2
vid = cv2.VideoCapture(str(filename))
max_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
curr_frame_n = random.randint(min_frame, max_frames)
vid.set(cv2.CAP_PROP_POS_FRAMES,curr_frame_n)
_, curr_frame = vid.read()
prev_frames = []
for i in range(n):
prev_frame_n = curr_frame_n - (i+1)*self.offset
vid.set(cv2.CAP_PROP_POS_FRAMES,prev_frame_n)
_, prev_frame = vid.read()
prev_frame = self.tform(Image.fromarray(prev_frame[...,::-1]))
prev_frames.append(prev_frame)
vid.release()
caption = self.captions[filename.name]
data = {
"image": self.tform(Image.fromarray(curr_frame[...,::-1])),
"prev": torch.cat(prev_frames, dim=-1),
"txt": caption
}
return data
# end hacky things
def make_tranforms(image_transforms):
# if isinstance(image_transforms, ListConfig):
# image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms = []
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
return image_transforms
def make_multi_folder_data(paths, caption_files=None, **kwargs):
"""Make a concat dataset from multiple folders
Don't suport captions yet
If paths is a list, that's ok, if it's a Dict interpret it as:
k=folder v=n_times to repeat that
"""
list_of_paths = []
if isinstance(paths, (Dict, DictConfig)):
assert caption_files is None, \
"Caption files not yet supported for repeats"
for folder_path, repeats in paths.items():
list_of_paths.extend([folder_path]*repeats)
paths = list_of_paths
if caption_files is not None:
datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
else:
datasets = [FolderData(p, **kwargs) for p in paths]
return torch.utils.data.ConcatDataset(datasets)
class NfpDataset(Dataset):
def __init__(self,
root_dir,
image_transforms=[],
ext="jpg",
default_caption="",
) -> None:
"""assume sequential frames and a deterministic transform"""
self.root_dir = Path(root_dir)
self.default_caption = default_caption
self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
self.tform = make_tranforms(image_transforms)
def __len__(self):
return len(self.paths) - 1
def __getitem__(self, index):
prev = self.paths[index]
curr = self.paths[index+1]
data = {}
data["image"] = self._load_im(curr)
data["prev"] = self._load_im(prev)
data["txt"] = self.default_caption
return data
def _load_im(self, filename):
im = Image.open(filename).convert("RGB")
return self.tform(im)
class ObjaverseDataModuleFromConfig(pl.LightningDataModule):
def __init__(self, root_dir, batch_size, total_view, train=None, validation=None,
test=None, num_workers=4, **kwargs):
super().__init__(self)
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers
self.total_view = total_view
if train is not None:
dataset_config = train
if validation is not None:
dataset_config = validation
if 'image_transforms' in dataset_config:
image_transforms = [torchvision.transforms.Resize(dataset_config.image_transforms.size)]
else:
image_transforms = []
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
self.image_transforms = torchvision.transforms.Compose(image_transforms)
def train_dataloader(self):
dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=False, \
image_transforms=self.image_transforms)
sampler = DistributedSampler(dataset)
return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler)
def val_dataloader(self):
dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=True, \
image_transforms=self.image_transforms)
sampler = DistributedSampler(dataset)
return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
def test_dataloader(self):
return wds.WebLoader(ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=self.validation),\
batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
class ObjaverseData(Dataset):
def __init__(self,
root_dir='.objaverse/hf-objaverse-v1/views',
image_transforms=[],
ext="png",
default_trans=torch.zeros(3),
postprocess=None,
return_paths=False,
total_view=4,
validation=False
) -> None:
"""Create a dataset from a folder of images.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
self.root_dir = Path(root_dir)
self.default_trans = default_trans
self.return_paths = return_paths
if isinstance(postprocess, DictConfig):
postprocess = instantiate_from_config(postprocess)
self.postprocess = postprocess
self.total_view = total_view
if not isinstance(ext, (tuple, list, ListConfig)):
ext = [ext]
with open(os.path.join(root_dir, 'valid_paths.json')) as f:
self.paths = json.load(f)
total_objects = len(self.paths)
if validation:
self.paths = self.paths[math.floor(total_objects / 100. * 99.):] # used last 1% as validation
else:
self.paths = self.paths[:math.floor(total_objects / 100. * 99.)] # used first 99% as training
print('============= length of dataset %d =============' % len(self.paths))
self.tform = image_transforms
def __len__(self):
return len(self.paths)
def cartesian_to_spherical(self, xyz):
ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
xy = xyz[:,0]**2 + xyz[:,1]**2
z = np.sqrt(xy + xyz[:,2]**2)
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
return np.array([theta, azimuth, z])
def get_T(self, target_RT, cond_RT):
R, T = target_RT[:3, :3], target_RT[:, -1]
T_target = -R.T @ T
R, T = cond_RT[:3, :3], cond_RT[:, -1]
T_cond = -R.T @ T
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
d_theta = theta_target - theta_cond
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
d_z = z_target - z_cond
d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
return d_T
def load_im(self, path, color):
'''
replace background pixel with random color in rendering
'''
try:
img = plt.imread(path)
except:
print(path)
sys.exit()
img[img[:, :, -1] == 0.] = color
img = Image.fromarray(np.uint8(img[:, :, :3] * 255.))
return img
def __getitem__(self, index):
data = {}
if self.paths[index][-2:] == '_1': # dirty fix for rendering dataset twice
total_view = 8
else:
total_view = 4
index_target, index_cond = random.sample(range(total_view), 2) # without replacement
filename = os.path.join(self.root_dir, self.paths[index])
# print(self.paths[index])
if self.return_paths:
data["path"] = str(filename)
color = [1., 1., 1., 1.]
try:
target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color))
cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color))
target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target))
cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond))
except:
# very hacky solution, sorry about this
filename = os.path.join(self.root_dir, '692db5f2d3a04bb286cb977a7dba903e_1') # this one we know is valid
target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color))
cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color))
target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target))
cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond))
target_im = torch.zeros_like(target_im)
cond_im = torch.zeros_like(cond_im)
data["image_target"] = target_im
data["image_cond"] = cond_im
data["T"] = self.get_T(target_RT, cond_RT)
if self.postprocess is not None:
data = self.postprocess(data)
return data
def process_im(self, im):
im = im.convert("RGB")
return self.tform(im)
class FolderData(Dataset):
def __init__(self,
root_dir,
caption_file=None,
image_transforms=[],
ext="jpg",
default_caption="",
postprocess=None,
return_paths=False,
) -> None:
"""Create a dataset from a folder of images.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
self.root_dir = Path(root_dir)
self.default_caption = default_caption
self.return_paths = return_paths
if isinstance(postprocess, DictConfig):
postprocess = instantiate_from_config(postprocess)
self.postprocess = postprocess
if caption_file is not None:
with open(caption_file, "rt") as f:
ext = Path(caption_file).suffix.lower()
if ext == ".json":
captions = json.load(f)
elif ext == ".jsonl":
lines = f.readlines()
lines = [json.loads(x) for x in lines]
captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
else:
raise ValueError(f"Unrecognised format: {ext}")
self.captions = captions
else:
self.captions = None
if not isinstance(ext, (tuple, list, ListConfig)):
ext = [ext]
# Only used if there is no caption file
self.paths = []
for e in ext:
self.paths.extend(sorted(list(self.root_dir.rglob(f"*.{e}"))))
self.tform = make_tranforms(image_transforms)
def __len__(self):
if self.captions is not None:
return len(self.captions.keys())
else:
return len(self.paths)
def __getitem__(self, index):
data = {}
if self.captions is not None:
chosen = list(self.captions.keys())[index]
caption = self.captions.get(chosen, None)
if caption is None:
caption = self.default_caption
filename = self.root_dir/chosen
else:
filename = self.paths[index]
if self.return_paths:
data["path"] = str(filename)
im = Image.open(filename).convert("RGB")
im = self.process_im(im)
data["image"] = im
if self.captions is not None:
data["txt"] = caption
else:
data["txt"] = self.default_caption
if self.postprocess is not None:
data = self.postprocess(data)
return data
def process_im(self, im):
im = im.convert("RGB")
return self.tform(im)
class TransformDataset():
def __init__(self, ds, extra_label="sksbspic"):
self.ds = ds
self.extra_label = extra_label
self.transforms = {
"align": transforms.Resize(768),
"centerzoom": transforms.CenterCrop(768),
"randzoom": transforms.RandomCrop(768),
}
def __getitem__(self, index):
data = self.ds[index]
im = data['image']
im = im.permute(2,0,1)
# In case data is smaller than expected
im = transforms.Resize(1024)(im)
tform_name = random.choice(list(self.transforms.keys()))
im = self.transforms[tform_name](im)
im = im.permute(1,2,0)
data['image'] = im
data['txt'] = data['txt'] + f" {self.extra_label} {tform_name}"
return data
def __len__(self):
return len(self.ds)
def hf_dataset(
name,
image_transforms=[],
image_column="image",
text_column="text",
split='train',
image_key='image',
caption_key='txt',
):
"""Make huggingface dataset with appropriate list of transforms applied
"""
ds = load_dataset(name, split=split)
tform = make_tranforms(image_transforms)
assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}"
def pre_process(examples):
processed = {}
processed[image_key] = [tform(im) for im in examples[image_column]]
processed[caption_key] = examples[text_column]
return processed
ds.set_transform(pre_process)
return ds
class TextOnly(Dataset):
def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
"""Returns only captions with dummy images"""
self.output_size = output_size
self.image_key = image_key
self.caption_key = caption_key
if isinstance(captions, Path):
self.captions = self._load_caption_file(captions)
else:
self.captions = captions
if n_gpus > 1:
# hack to make sure that all the captions appear on each gpu
repeated = [n_gpus*[x] for x in self.captions]
self.captions = []
[self.captions.extend(x) for x in repeated]
def __len__(self):
return len(self.captions)
def __getitem__(self, index):
dummy_im = torch.zeros(3, self.output_size, self.output_size)
dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
def _load_caption_file(self, filename):
with open(filename, 'rt') as f:
captions = f.readlines()
return [x.strip('\n') for x in captions]
class IdRetreivalDataset(FolderData):
def __init__(self, ret_file, *args, **kwargs):
super().__init__(*args, **kwargs)
with open(ret_file, "rt") as f:
self.ret = json.load(f)
def __getitem__(self, index):
data = super().__getitem__(index)
key = self.paths[index].name
matches = self.ret[key]
if len(matches) > 0:
retreived = random.choice(matches)
else:
retreived = key
filename = self.root_dir/retreived
im = Image.open(filename).convert("RGB")
im = self.process_im(im)
# data["match"] = im
data["match"] = torch.cat((data["image"], im), dim=-1)
return data
|