Spaces:
Paused
Paused
File size: 12,951 Bytes
4f2a492 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
# Copyright 2023 Open AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL.Image
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel
from ...models import PriorTransformer
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
logging,
replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from .renderer import ShapERenderer
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from PIL import Image
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from diffusers.utils import export_to_gif, load_image
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> repo = "openai/shap-e-img2img"
>>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)
>>> pipe = pipe.to(device)
>>> guidance_scale = 3.0
>>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"
>>> image = load_image(image_url).convert("RGB")
>>> images = pipe(
... image,
... guidance_scale=guidance_scale,
... num_inference_steps=64,
... frame_size=256,
... ).images
>>> gif_path = export_to_gif(images[0], "corgi_3d.gif")
```
"""
@dataclass
class ShapEPipelineOutput(BaseOutput):
"""
Output class for [`ShapEPipeline`] and [`ShapEImg2ImgPipeline`].
Args:
images (`torch.FloatTensor`)
A list of images for 3D rendering.
"""
images: Union[PIL.Image.Image, np.ndarray]
class ShapEImg2ImgPipeline(DiffusionPipeline):
"""
Pipeline for generating latent representation of a 3D asset and rendering with the NeRF method from an image.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
prior ([`PriorTransformer`]):
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
image_encoder ([`~transformers.CLIPVisionModel`]):
Frozen image-encoder.
image_processor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to process images.
scheduler ([`HeunDiscreteScheduler`]):
A scheduler to be used in combination with the `prior` model to generate image embedding.
shap_e_renderer ([`ShapERenderer`]):
Shap-E renderer projects the generated latents into parameters of a MLP to create 3D objects with the NeRF
rendering method.
"""
model_cpu_offload_seq = "image_encoder->prior"
_exclude_from_cpu_offload = ["shap_e_renderer"]
def __init__(
self,
prior: PriorTransformer,
image_encoder: CLIPVisionModel,
image_processor: CLIPImageProcessor,
scheduler: HeunDiscreteScheduler,
shap_e_renderer: ShapERenderer,
):
super().__init__()
self.register_modules(
prior=prior,
image_encoder=image_encoder,
image_processor=image_processor,
scheduler=scheduler,
shap_e_renderer=shap_e_renderer,
)
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
return latents
def _encode_image(
self,
image,
device,
num_images_per_prompt,
do_classifier_free_guidance,
):
if isinstance(image, List) and isinstance(image[0], torch.Tensor):
image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
if not isinstance(image, torch.Tensor):
image = self.image_processor(image, return_tensors="pt").pixel_values[0].unsqueeze(0)
image = image.to(dtype=self.image_encoder.dtype, device=device)
image_embeds = self.image_encoder(image)["last_hidden_state"]
image_embeds = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
negative_image_embeds = torch.zeros_like(image_embeds)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
image_embeds = torch.cat([negative_image_embeds, image_embeds])
return image_embeds
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
image: Union[PIL.Image.Image, List[PIL.Image.Image]],
num_images_per_prompt: int = 1,
num_inference_steps: int = 25,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
guidance_scale: float = 4.0,
frame_size: int = 64,
output_type: Optional[str] = "pil", # pil, np, latent, mesh
return_dict: bool = True,
):
"""
The call function to the pipeline for generation.
Args:
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image` or tensor representing an image batch to be used as the starting point. Can also accept image
latents as image, but if passing latents directly it is not encoded again.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
num_inference_steps (`int`, *optional*, defaults to 25):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
guidance_scale (`float`, *optional*, defaults to 4.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
frame_size (`int`, *optional*, default to 64):
The width and height of each image frame of the generated 3D output.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`), `"latent"` (`torch.Tensor`), or mesh ([`MeshDecoderOutput`]).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput`] instead of a plain
tuple.
Examples:
Returns:
[`~pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images.
"""
if isinstance(image, PIL.Image.Image):
batch_size = 1
elif isinstance(image, torch.Tensor):
batch_size = image.shape[0]
elif isinstance(image, list) and isinstance(image[0], (torch.Tensor, PIL.Image.Image)):
batch_size = len(image)
else:
raise ValueError(
f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(image)}"
)
device = self._execution_device
batch_size = batch_size * num_images_per_prompt
do_classifier_free_guidance = guidance_scale > 1.0
image_embeds = self._encode_image(image, device, num_images_per_prompt, do_classifier_free_guidance)
# prior
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
num_embeddings = self.prior.config.num_embeddings
embedding_dim = self.prior.config.embedding_dim
latents = self.prepare_latents(
(batch_size, num_embeddings * embedding_dim),
image_embeds.dtype,
device,
generator,
latents,
self.scheduler,
)
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
latents = latents.reshape(latents.shape[0], num_embeddings, embedding_dim)
for i, t in enumerate(self.progress_bar(timesteps)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t)
noise_pred = self.prior(
scaled_model_input,
timestep=t,
proj_embedding=image_embeds,
).predicted_image_embedding
# remove the variance
noise_pred, _ = noise_pred.split(
scaled_model_input.shape[2], dim=2
) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
latents = self.scheduler.step(
noise_pred,
timestep=t,
sample=latents,
).prev_sample
if output_type not in ["np", "pil", "latent", "mesh"]:
raise ValueError(
f"Only the output types `pil`, `np`, `latent` and `mesh` are supported not output_type={output_type}"
)
# Offload all models
self.maybe_free_model_hooks()
if output_type == "latent":
return ShapEPipelineOutput(images=latents)
images = []
if output_type == "mesh":
for i, latent in enumerate(latents):
mesh = self.shap_e_renderer.decode_to_mesh(
latent[None, :],
device,
)
images.append(mesh)
else:
# np, pil
for i, latent in enumerate(latents):
image = self.shap_e_renderer.decode_to_image(
latent[None, :],
device,
size=frame_size,
)
images.append(image)
images = torch.stack(images)
images = images.cpu().numpy()
if output_type == "pil":
images = [self.numpy_to_pil(image) for image in images]
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=images)
|