Spaces:
Runtime error
Runtime error
File size: 4,010 Bytes
1699569 e5a12b8 1699569 a6d026f f192d73 3c93bf0 3559da9 f192d73 afb8bf9 3c93bf0 3559da9 afb8bf9 a6d026f 2bba935 3c93bf0 1699569 70d1c6a 2bba935 b2912c4 e5a12b8 1699569 c85c4ca 8715634 67703fc c85c4ca b6e45c4 c85c4ca 03f26bd 1699569 e5a12b8 f658f80 e5a12b8 3c93bf0 e5a12b8 50cfb9e e5a12b8 c11ca30 e5a12b8 6dc9e75 e5a12b8 f658f80 e5a12b8 1699569 4b2cc15 1699569 4b2cc15 1699569 e5a12b8 1699569 f658f80 e5a12b8 3c93bf0 e5a12b8 f658f80 e5a12b8 80e99ff e5a12b8 6dc9e75 e5a12b8 f658f80 8715634 7183901 e5a12b8 1699569 65ce061 2f21339 5ba2c0e e5a12b8 1699569 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import streamlit as st
import time
import json
from gensim.models import Word2Vec
import pandas as pd
import matplotlib.pyplot as plt
import squarify
import numpy as np
# Define the HTML and CSS styles
st.markdown(
"""
<style>
body {
background-color: #EBF5FB;
# color: #ffffff;
}
.stApp {
background-color: #EBF5FB;
# color: #ffffff;
}
</style>
""",
unsafe_allow_html=True
)
st.header("Word2Vec App for Clotting Pubmed Database.")
text_input_value = st.text_input("Enter one term to search within the Clotting database")
query = text_input_value
query = query.lower()
# query = input ("Enter your keyword(s):")
if query:
bar = st.progress(0)
time.sleep(.2)
st.caption(":LightSkyBlue[searching 40123 PubMed abstracts]")
for i in range(10):
bar.progress((i+1)*10)
time.sleep(.1)
model = Word2Vec.load("pubmed_model_clotting") # you can continue training with the loaded model!
words = list(model.wv.key_to_index)
X = model.wv[model.wv.key_to_index]
model2 = model.wv[query]
df = pd.DataFrame(X)
# def findRelationships(query, df):
table = model.wv.most_similar_cosmul(query, topn=10000)
table = (pd.DataFrame(table))
table.index.name = 'Rank'
table.columns = ['Word', 'SIMILARITY']
print()
print("Similarity to " + str(query))
pd.set_option('display.max_rows', None)
print(table.head(50))
# table.head(10).to_csv("clotting_sim1.csv", index=True)
# short_table = table.head(50)
# print(table)
st.subheader(f"Similar Words to {query}")
# calculate the sizes of the squares in the treemap
short_table = table.head(10)
short_table.index += 1
short_table.index = 1 / short_table.index
sizes = short_table.index.tolist()
cmap = plt.cm.Greens(np.linspace(0.05, .5, len(sizes)))
color = [cmap[i] for i in range(len(sizes))]
short_table.set_index('Word', inplace=True)
squarify.plot(sizes=sizes, label=short_table.index.tolist(), color=color, edgecolor="#EBF5FB", text_kwargs={'fontsize': 10})
# # plot the treemap using matplotlib
plt.axis('off')
fig = plt.gcf()
fig.patch.set_facecolor('#EBF5FB')
# # display the treemap in Streamlit
st.pyplot(fig)
plt.clf()
csv = table.head(100)
st.download_button(
label="download top 100 words (csv)",
data=csv,
file_name='clotting_words.csv',
mime='text/csv')
# st.write(short_table)
#
print()
print("Human genes similar to " + str(query))
df1 = table
df2 = pd.read_csv('Human_Genes.csv')
m = df1.Word.isin(df2.symbol)
df1 = df1[m]
df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
df1["Human Gene"] = df1["Human Gene"].str.upper()
print(df1.head(50))
print()
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
# time.sleep(2)
st.subheader(f"Similar Genes to {query}")
df10 = df1.head(10)
df10.index = 1/df10.index
sizes = df10.index.tolist()
cmap2 = plt.cm.Blues(np.linspace(0.05, .5, len(sizes)))
color2 = [cmap2[i] for i in range(len(sizes))]
df1.set_index('Human Gene', inplace=True)
squarify.plot(sizes=sizes, label=df1.index.tolist(), color=color2, edgecolor="#EBF5FB", text_kwargs={'fontsize': 12})
#
# # plot the treemap using matplotlib
plt.axis('off')
fig2 = plt.gcf()
fig2.patch.set_facecolor('#EBF5FB')
# plt.show()
#
# # display the treemap in Streamlit
st.pyplot(fig2)
csv = df1.head(100)
st.download_button(
label="download top 100 genes (csv)",
data=csv,
file_name='clotting_genes.csv',
mime='text/csv')
# findRelationships(query, df)
# model = gensim.models.KeyedVectors.load_word2vec_format('pubmed_model_clotting', binary=True)
# similar_words = model.most_similar(word)
# output = json.dumps({"word": word, "similar_words": similar_words})
# st.write(output)
|