File size: 23,729 Bytes
b6068b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
from __future__ import annotations

import io
from typing import TYPE_CHECKING, Any, cast

import matplotlib.collections as mcollections
import matplotlib.pyplot as plt
import numpy as np

from contourpy import FillType, LineType
from contourpy.util.mpl_util import filled_to_mpl_paths, lines_to_mpl_paths, mpl_codes_to_offsets
from contourpy.util.renderer import Renderer

if TYPE_CHECKING:
    from matplotlib.axes import Axes
    from matplotlib.figure import Figure
    from numpy.typing import ArrayLike

    import contourpy._contourpy as cpy


class MplRenderer(Renderer):
    _axes: Axes
    _fig: Figure
    _want_tight: bool

    """Utility renderer using Matplotlib to render a grid of plots over the same (x, y) range.

    Args:
        nrows (int, optional): Number of rows of plots, default ``1``.
        ncols (int, optional): Number of columns of plots, default ``1``.
        figsize (tuple(float, float), optional): Figure size in inches, default ``(9, 9)``.
        show_frame (bool, optional): Whether to show frame and axes ticks, default ``True``.
        backend (str, optional): Matplotlib backend to use or ``None`` for default backend.
            Default ``None``.
        gridspec_kw (dict, optional): Gridspec keyword arguments to pass to ``plt.subplots``,
            default None.
    """
    def __init__(
        self,
        nrows: int = 1,
        ncols: int = 1,
        figsize: tuple[float, float] = (9, 9),
        show_frame: bool = True,
        backend: str | None = None,
        gridspec_kw: dict[str, Any] | None = None,
    ) -> None:
        if backend is not None:
            import matplotlib
            matplotlib.use(backend)

        kwargs = dict(figsize=figsize, squeeze=False, sharex=True, sharey=True)
        if gridspec_kw is not None:
            kwargs["gridspec_kw"] = gridspec_kw
        else:
            kwargs["subplot_kw"] = dict(aspect="equal")

        self._fig, axes = plt.subplots(nrows, ncols, **kwargs)
        self._axes = axes.flatten()
        if not show_frame:
            for ax in self._axes:
                ax.axis("off")

        self._want_tight = True

    def __del__(self) -> None:
        if hasattr(self, "_fig"):
            plt.close(self._fig)

    def _autoscale(self) -> None:
        # Using axes._need_autoscale attribute if need to autoscale before rendering after adding
        # lines/filled.  Only want to autoscale once per axes regardless of how many lines/filled
        # added.
        for ax in self._axes:
            if getattr(ax, "_need_autoscale", False):
                ax.autoscale_view(tight=True)
                ax._need_autoscale = False
        if self._want_tight and len(self._axes) > 1:
            self._fig.tight_layout()

    def _get_ax(self, ax: Axes | int) -> Axes:
        if isinstance(ax, int):
            ax = self._axes[ax]
        return ax

    def filled(
        self,
        filled: cpy.FillReturn,
        fill_type: FillType,
        ax: Axes | int = 0,
        color: str = "C0",
        alpha: float = 0.7,
    ) -> None:
        """Plot filled contours on a single Axes.

        Args:
            filled (sequence of arrays): Filled contour data as returned by
                :func:`~contourpy.ContourGenerator.filled`.
            fill_type (FillType): Type of ``filled`` data, as returned by
                :attr:`~contourpy.ContourGenerator.fill_type`.
            ax (int or Maplotlib Axes, optional): Which axes to plot on, default ``0``.
            color (str, optional): Color to plot with. May be a string color or the letter ``"C"``
                followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
                ``tab10`` colormap. Default ``"C0"``.
            alpha (float, optional): Opacity to plot with, default ``0.7``.
        """
        ax = self._get_ax(ax)
        paths = filled_to_mpl_paths(filled, fill_type)
        collection = mcollections.PathCollection(
            paths, facecolors=color, edgecolors="none", lw=0, alpha=alpha)
        ax.add_collection(collection)
        ax._need_autoscale = True

    def grid(
        self,
        x: ArrayLike,
        y: ArrayLike,
        ax: Axes | int = 0,
        color: str = "black",
        alpha: float = 0.1,
        point_color: str | None = None,
        quad_as_tri_alpha: float = 0,
    ) -> None:
        """Plot quad grid lines on a single Axes.

        Args:
            x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
            y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
            ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``.
            color (str, optional): Color to plot grid lines, default ``"black"``.
            alpha (float, optional): Opacity to plot lines with, default ``0.1``.
            point_color (str, optional): Color to plot grid points or ``None`` if grid points
                should not be plotted, default ``None``.
            quad_as_tri_alpha (float, optional): Opacity to plot ``quad_as_tri`` grid, default 0.

        Colors may be a string color or the letter ``"C"`` followed by an integer in the range
        ``"C0"`` to ``"C9"`` to use a color from the ``tab10`` colormap.

        Warning:
            ``quad_as_tri_alpha > 0`` plots all quads as though they are unmasked.
        """
        ax = self._get_ax(ax)
        x, y = self._grid_as_2d(x, y)
        kwargs = dict(color=color, alpha=alpha)
        ax.plot(x, y, x.T, y.T, **kwargs)
        if quad_as_tri_alpha > 0:
            # Assumes no quad mask.
            xmid = 0.25*(x[:-1, :-1] + x[1:, :-1] + x[:-1, 1:] + x[1:, 1:])
            ymid = 0.25*(y[:-1, :-1] + y[1:, :-1] + y[:-1, 1:] + y[1:, 1:])
            kwargs["alpha"] = quad_as_tri_alpha
            ax.plot(
                np.stack((x[:-1, :-1], xmid, x[1:, 1:])).reshape((3, -1)),
                np.stack((y[:-1, :-1], ymid, y[1:, 1:])).reshape((3, -1)),
                np.stack((x[1:, :-1], xmid, x[:-1, 1:])).reshape((3, -1)),
                np.stack((y[1:, :-1], ymid, y[:-1, 1:])).reshape((3, -1)),
                **kwargs)
        if point_color is not None:
            ax.plot(x, y, color=point_color, alpha=alpha, marker="o", lw=0)
        ax._need_autoscale = True

    def lines(
        self,
        lines: cpy.LineReturn,
        line_type: LineType,
        ax: Axes | int = 0,
        color: str = "C0",
        alpha: float = 1.0,
        linewidth: float = 1,
    ) -> None:
        """Plot contour lines on a single Axes.

        Args:
            lines (sequence of arrays): Contour line data as returned by
                :func:`~contourpy.ContourGenerator.lines`.
            line_type (LineType): Type of ``lines`` data, as returned by
                :attr:`~contourpy.ContourGenerator.line_type`.
            ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``.
            color (str, optional): Color to plot lines. May be a string color or the letter ``"C"``
                followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
                ``tab10`` colormap. Default ``"C0"``.
            alpha (float, optional): Opacity to plot lines with, default ``1.0``.
            linewidth (float, optional): Width of lines, default ``1``.
        """
        ax = self._get_ax(ax)
        paths = lines_to_mpl_paths(lines, line_type)
        collection = mcollections.PathCollection(
            paths, facecolors="none", edgecolors=color, lw=linewidth, alpha=alpha)
        ax.add_collection(collection)
        ax._need_autoscale = True

    def mask(
        self,
        x: ArrayLike,
        y: ArrayLike,
        z: ArrayLike | np.ma.MaskedArray[Any, Any],
        ax: Axes | int = 0,
        color: str = "black",
    ) -> None:
        """Plot masked out grid points as circles on a single Axes.

        Args:
            x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
            y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
            z (masked array of shape (ny, nx): z-values.
            ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``.
            color (str, optional): Circle color, default ``"black"``.
        """
        mask = np.ma.getmask(z)  # type: ignore[no-untyped-call]
        if mask is np.ma.nomask:
            return
        ax = self._get_ax(ax)
        x, y = self._grid_as_2d(x, y)
        ax.plot(x[mask], y[mask], "o", c=color)

    def save(self, filename: str, transparent: bool = False) -> None:
        """Save plots to SVG or PNG file.

        Args:
            filename (str): Filename to save to.
            transparent (bool, optional): Whether background should be transparent, default
                ``False``.
        """
        self._autoscale()
        self._fig.savefig(filename, transparent=transparent)

    def save_to_buffer(self) -> io.BytesIO:
        """Save plots to an ``io.BytesIO`` buffer.

        Return:
            BytesIO: PNG image buffer.
        """
        self._autoscale()
        buf = io.BytesIO()
        self._fig.savefig(buf, format="png")
        buf.seek(0)
        return buf

    def show(self) -> None:
        """Show plots in an interactive window, in the usual Matplotlib manner.
        """
        self._autoscale()
        plt.show()

    def title(self, title: str, ax: Axes | int = 0, color: str | None = None) -> None:
        """Set the title of a single Axes.

        Args:
            title (str): Title text.
            ax (int or Matplotlib Axes, optional): Which Axes to set the title of, default ``0``.
            color (str, optional): Color to set title. May be a string color or the letter ``"C"``
                followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
                ``tab10`` colormap. Default is ``None`` which uses Matplotlib's default title color
                that depends on the stylesheet in use.
        """
        if color:
            self._get_ax(ax).set_title(title, color=color)
        else:
            self._get_ax(ax).set_title(title)

    def z_values(
        self,
        x: ArrayLike,
        y: ArrayLike,
        z: ArrayLike,
        ax: Axes | int = 0,
        color: str = "green",
        fmt: str = ".1f",
        quad_as_tri: bool = False,
    ) -> None:
        """Show ``z`` values on a single Axes.

        Args:
            x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
            y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
            z (array-like of shape (ny, nx): z-values.
            ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``.
            color (str, optional): Color of added text. May be a string color or the letter ``"C"``
                followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
                ``tab10`` colormap. Default ``"green"``.
            fmt (str, optional): Format to display z-values, default ``".1f"``.
            quad_as_tri (bool, optional): Whether to show z-values at the ``quad_as_tri`` centers
                of quads.

        Warning:
            ``quad_as_tri=True`` shows z-values for all quads, even if masked.
        """
        ax = self._get_ax(ax)
        x, y = self._grid_as_2d(x, y)
        z = np.asarray(z)
        ny, nx = z.shape
        for j in range(ny):
            for i in range(nx):
                ax.text(x[j, i], y[j, i], f"{z[j, i]:{fmt}}", ha="center", va="center",
                        color=color, clip_on=True)
        if quad_as_tri:
            for j in range(ny-1):
                for i in range(nx-1):
                    xx = np.mean(x[j:j+2, i:i+2])
                    yy = np.mean(y[j:j+2, i:i+2])
                    zz = np.mean(z[j:j+2, i:i+2])
                    ax.text(xx, yy, f"{zz:{fmt}}", ha="center", va="center", color=color,
                            clip_on=True)


class MplTestRenderer(MplRenderer):
    """Test renderer implemented using Matplotlib.

    No whitespace around plots and no spines/ticks displayed.
    Uses Agg backend, so can only save to file/buffer, cannot call ``show()``.
    """
    def __init__(
        self,
        nrows: int = 1,
        ncols: int = 1,
        figsize: tuple[float, float] = (9, 9),
    ) -> None:
        gridspec = {
            "left": 0.01,
            "right": 0.99,
            "top": 0.99,
            "bottom": 0.01,
            "wspace": 0.01,
            "hspace": 0.01,
        }
        super().__init__(
            nrows, ncols, figsize, show_frame=True, backend="Agg", gridspec_kw=gridspec,
        )

        for ax in self._axes:
            ax.set_xmargin(0.0)
            ax.set_ymargin(0.0)
            ax.set_xticks([])
            ax.set_yticks([])

        self._want_tight = False


class MplDebugRenderer(MplRenderer):
    """Debug renderer implemented using Matplotlib.

    Extends ``MplRenderer`` to add extra information to help in debugging such as markers, arrows,
    text, etc.
    """
    def __init__(
        self,
        nrows: int = 1,
        ncols: int = 1,
        figsize: tuple[float, float] = (9, 9),
        show_frame: bool = True,
    ) -> None:
        super().__init__(nrows, ncols, figsize, show_frame)

    def _arrow(
        self,
        ax: Axes,
        line_start: cpy.CoordinateArray,
        line_end: cpy.CoordinateArray,
        color: str,
        alpha: float,
        arrow_size: float,
    ) -> None:
        mid = 0.5*(line_start + line_end)
        along = line_end - line_start
        along /= np.sqrt(np.dot(along, along))  # Unit vector.
        right = np.asarray((along[1], -along[0]))
        arrow = np.stack((
            mid - (along*0.5 - right)*arrow_size,
            mid + along*0.5*arrow_size,
            mid - (along*0.5 + right)*arrow_size,
        ))
        ax.plot(arrow[:, 0], arrow[:, 1], "-", c=color, alpha=alpha)

    def _filled_to_lists_of_points_and_offsets(
        self,
        filled: cpy.FillReturn,
        fill_type: FillType,
    ) -> tuple[list[cpy.PointArray], list[cpy.OffsetArray]]:
        if fill_type == FillType.OuterCode:
            if TYPE_CHECKING:
                filled = cast(cpy.FillReturn_OuterCode, filled)
            all_points = filled[0]
            all_offsets = [mpl_codes_to_offsets(codes) for codes in filled[1]]
        elif fill_type == FillType.ChunkCombinedCode:
            if TYPE_CHECKING:
                filled = cast(cpy.FillReturn_ChunkCombinedCode, filled)
            all_points = [points for points in filled[0] if points is not None]
            all_offsets = [mpl_codes_to_offsets(codes) for codes in filled[1] if codes is not None]
        elif fill_type == FillType.OuterOffset:
            if TYPE_CHECKING:
                filled = cast(cpy.FillReturn_OuterOffset, filled)
            all_points = filled[0]
            all_offsets = filled[1]
        elif fill_type == FillType.ChunkCombinedOffset:
            if TYPE_CHECKING:
                filled = cast(cpy.FillReturn_ChunkCombinedOffset, filled)
            all_points = [points for points in filled[0] if points is not None]
            all_offsets = [offsets for offsets in filled[1] if offsets is not None]
        elif fill_type == FillType.ChunkCombinedCodeOffset:
            if TYPE_CHECKING:
                filled = cast(cpy.FillReturn_ChunkCombinedCodeOffset, filled)
            all_points = []
            all_offsets = []
            for points, codes, outer_offsets in zip(*filled):
                if points is None:
                    continue
                if TYPE_CHECKING:
                    assert codes is not None and outer_offsets is not None
                all_points += np.split(points, outer_offsets[1:-1])
                all_codes = np.split(codes, outer_offsets[1:-1])
                all_offsets += [mpl_codes_to_offsets(codes) for codes in all_codes]
        elif fill_type == FillType.ChunkCombinedOffsetOffset:
            if TYPE_CHECKING:
                filled = cast(cpy.FillReturn_ChunkCombinedOffsetOffset, filled)
            all_points = []
            all_offsets = []
            for points, offsets, outer_offsets in zip(*filled):
                if points is None:
                    continue
                if TYPE_CHECKING:
                    assert offsets is not None and outer_offsets is not None
                for i in range(len(outer_offsets)-1):
                    offs = offsets[outer_offsets[i]:outer_offsets[i+1]+1]
                    all_points.append(points[offs[0]:offs[-1]])
                    all_offsets.append(offs - offs[0])
        else:
            raise RuntimeError(f"Rendering FillType {fill_type} not implemented")

        return all_points, all_offsets

    def _lines_to_list_of_points(
        self, lines: cpy.LineReturn, line_type: LineType,
    ) -> list[cpy.PointArray]:
        if line_type == LineType.Separate:
            if TYPE_CHECKING:
                lines = cast(cpy.LineReturn_Separate, lines)
            all_lines = lines
        elif line_type == LineType.SeparateCode:
            if TYPE_CHECKING:
                lines = cast(cpy.LineReturn_SeparateCode, lines)
            all_lines = lines[0]
        elif line_type == LineType.ChunkCombinedCode:
            if TYPE_CHECKING:
                lines = cast(cpy.LineReturn_ChunkCombinedCode, lines)
            all_lines = []
            for points, codes in zip(*lines):
                if points is not None:
                    if TYPE_CHECKING:
                        assert codes is not None
                    offsets = mpl_codes_to_offsets(codes)
                    for i in range(len(offsets)-1):
                        all_lines.append(points[offsets[i]:offsets[i+1]])
        elif line_type == LineType.ChunkCombinedOffset:
            if TYPE_CHECKING:
                lines = cast(cpy.LineReturn_ChunkCombinedOffset, lines)
            all_lines = []
            for points, all_offsets in zip(*lines):
                if points is not None:
                    if TYPE_CHECKING:
                        assert all_offsets is not None
                    for i in range(len(all_offsets)-1):
                        all_lines.append(points[all_offsets[i]:all_offsets[i+1]])
        else:
            raise RuntimeError(f"Rendering LineType {line_type} not implemented")

        return all_lines

    def filled(
        self,
        filled: cpy.FillReturn,
        fill_type: FillType,
        ax: Axes | int = 0,
        color: str = "C1",
        alpha: float = 0.7,
        line_color: str = "C0",
        line_alpha: float = 0.7,
        point_color: str = "C0",
        start_point_color: str = "red",
        arrow_size: float = 0.1,
    ) -> None:
        super().filled(filled, fill_type, ax, color, alpha)

        if line_color is None and point_color is None:
            return

        ax = self._get_ax(ax)
        all_points, all_offsets = self._filled_to_lists_of_points_and_offsets(filled, fill_type)

        # Lines.
        if line_color is not None:
            for points, offsets in zip(all_points, all_offsets):
                for start, end in zip(offsets[:-1], offsets[1:]):
                    xys = points[start:end]
                    ax.plot(xys[:, 0], xys[:, 1], c=line_color, alpha=line_alpha)

                    if arrow_size > 0.0:
                        n = len(xys)
                        for i in range(n-1):
                            self._arrow(ax, xys[i], xys[i+1], line_color, line_alpha, arrow_size)

        # Points.
        if point_color is not None:
            for points, offsets in zip(all_points, all_offsets):
                mask = np.ones(offsets[-1], dtype=bool)
                mask[offsets[1:]-1] = False  # Exclude end points.
                if start_point_color is not None:
                    start_indices = offsets[:-1]
                    mask[start_indices] = False  # Exclude start points.
                ax.plot(
                    points[:, 0][mask], points[:, 1][mask], "o", c=point_color, alpha=line_alpha)

                if start_point_color is not None:
                    ax.plot(points[:, 0][start_indices], points[:, 1][start_indices], "o",
                            c=start_point_color, alpha=line_alpha)

    def lines(
        self,
        lines: cpy.LineReturn,
        line_type: LineType,
        ax: Axes | int = 0,
        color: str = "C0",
        alpha: float = 1.0,
        linewidth: float = 1,
        point_color: str = "C0",
        start_point_color: str = "red",
        arrow_size: float = 0.1,
    ) -> None:
        super().lines(lines, line_type, ax, color, alpha, linewidth)

        if arrow_size == 0.0 and point_color is None:
            return

        ax = self._get_ax(ax)
        all_lines = self._lines_to_list_of_points(lines, line_type)

        if arrow_size > 0.0:
            for line in all_lines:
                for i in range(len(line)-1):
                    self._arrow(ax, line[i], line[i+1], color, alpha, arrow_size)

        if point_color is not None:
            for line in all_lines:
                start_index = 0
                end_index = len(line)
                if start_point_color is not None:
                    ax.plot(line[0, 0], line[0, 1], "o", c=start_point_color, alpha=alpha)
                    start_index = 1
                    if line[0][0] == line[-1][0] and line[0][1] == line[-1][1]:
                        end_index -= 1
                ax.plot(line[start_index:end_index, 0], line[start_index:end_index, 1], "o",
                        c=color, alpha=alpha)

    def point_numbers(
        self,
        x: ArrayLike,
        y: ArrayLike,
        z: ArrayLike,
        ax: Axes | int = 0,
        color: str = "red",
    ) -> None:
        ax = self._get_ax(ax)
        x, y = self._grid_as_2d(x, y)
        z = np.asarray(z)
        ny, nx = z.shape
        for j in range(ny):
            for i in range(nx):
                quad = i + j*nx
                ax.text(x[j, i], y[j, i], str(quad), ha="right", va="top", color=color,
                        clip_on=True)

    def quad_numbers(
        self,
        x: ArrayLike,
        y: ArrayLike,
        z: ArrayLike,
        ax: Axes | int = 0,
        color: str = "blue",
    ) -> None:
        ax = self._get_ax(ax)
        x, y = self._grid_as_2d(x, y)
        z = np.asarray(z)
        ny, nx = z.shape
        for j in range(1, ny):
            for i in range(1, nx):
                quad = i + j*nx
                xmid = x[j-1:j+1, i-1:i+1].mean()
                ymid = y[j-1:j+1, i-1:i+1].mean()
                ax.text(xmid, ymid, str(quad), ha="center", va="center", color=color, clip_on=True)

    def z_levels(
        self,
        x: ArrayLike,
        y: ArrayLike,
        z: ArrayLike,
        lower_level: float,
        upper_level: float | None = None,
        ax: Axes | int = 0,
        color: str = "green",
    ) -> None:
        ax = self._get_ax(ax)
        x, y = self._grid_as_2d(x, y)
        z = np.asarray(z)
        ny, nx = z.shape
        for j in range(ny):
            for i in range(nx):
                zz = z[j, i]
                if upper_level is not None and zz > upper_level:
                    z_level = 2
                elif zz > lower_level:
                    z_level = 1
                else:
                    z_level = 0
                ax.text(x[j, i], y[j, i], z_level, ha="left", va="bottom", color=color,
                        clip_on=True)