jexzeb commited on
Commit
b6068b4
·
1 Parent(s): 6edf708

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +36 -0
  2. .gitignore +157 -0
  3. DragGAN.gif +3 -0
  4. LICENSE.txt +97 -0
  5. README.md +103 -6
  6. __pycache__/legacy.cpython-310.pyc +0 -0
  7. arial.ttf +0 -0
  8. checkpoints/stylegan2-afhqcat-512x512.pkl +3 -0
  9. checkpoints/stylegan2-car-config-f.pkl +3 -0
  10. checkpoints/stylegan2-cat-config-f.pkl +3 -0
  11. checkpoints/stylegan2-ffhq-512x512.pkl +3 -0
  12. checkpoints/stylegan2_dogs_1024_pytorch.pkl +3 -0
  13. checkpoints/stylegan2_elephants_512_pytorch.pkl +3 -0
  14. checkpoints/stylegan2_horses_256_pytorch.pkl +3 -0
  15. checkpoints/stylegan2_lions_512_pytorch.pkl +3 -0
  16. dnnlib/__init__.py +9 -0
  17. dnnlib/__pycache__/__init__.cpython-310.pyc +0 -0
  18. dnnlib/__pycache__/util.cpython-310.pyc +0 -0
  19. dnnlib/util.py +491 -0
  20. environment.yml +27 -0
  21. gen_images.py +150 -0
  22. gradio_utils/__init__.py +9 -0
  23. gradio_utils/__pycache__/__init__.cpython-310.pyc +0 -0
  24. gradio_utils/__pycache__/utils.cpython-310.pyc +0 -0
  25. gradio_utils/utils.py +154 -0
  26. gui_utils/__init__.py +9 -0
  27. gui_utils/__pycache__/__init__.cpython-310.pyc +0 -0
  28. gui_utils/__pycache__/gl_utils.cpython-310.pyc +0 -0
  29. gui_utils/__pycache__/glfw_window.cpython-310.pyc +0 -0
  30. gui_utils/__pycache__/imgui_utils.cpython-310.pyc +0 -0
  31. gui_utils/__pycache__/imgui_window.cpython-310.pyc +0 -0
  32. gui_utils/__pycache__/text_utils.cpython-310.pyc +0 -0
  33. gui_utils/gl_utils.py +416 -0
  34. gui_utils/glfw_window.py +229 -0
  35. gui_utils/imgui_utils.py +191 -0
  36. gui_utils/imgui_window.py +103 -0
  37. gui_utils/text_utils.py +123 -0
  38. legacy.py +323 -0
  39. requirements.txt +9 -0
  40. scripts/download_model.bat +23 -0
  41. scripts/download_model.sh +19 -0
  42. scripts/gui.bat +12 -0
  43. scripts/gui.sh +11 -0
  44. stylegan_human/.gitignore +10 -0
  45. stylegan_human/PP_HumanSeg/deploy/infer.py +180 -0
  46. stylegan_human/PP_HumanSeg/export_model/download_export_model.py +44 -0
  47. stylegan_human/PP_HumanSeg/pretrained_model/download_pretrained_model.py +44 -0
  48. stylegan_human/README.md +229 -0
  49. stylegan_human/__init__.py +0 -0
  50. stylegan_human/alignment.py +223 -0
.gitattributes CHANGED
@@ -33,3 +33,39 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ DragGAN.gif filter=lfs diff=lfs merge=lfs -text
37
+ stylegan_human/img/demo_V5_thumbnails-min.png filter=lfs diff=lfs merge=lfs -text
38
+ stylegan_human/img/preview_samples1.png filter=lfs diff=lfs merge=lfs -text
39
+ stylegan_human/img/test/test.jpg filter=lfs diff=lfs merge=lfs -text
40
+ venv/lib/python3.10/site-packages/PIL/.dylibs/libfreetype.6.dylib filter=lfs diff=lfs merge=lfs -text
41
+ venv/lib/python3.10/site-packages/PIL/.dylibs/libharfbuzz.0.dylib filter=lfs diff=lfs merge=lfs -text
42
+ venv/lib/python3.10/site-packages/altair/vegalite/v5/schema/__pycache__/core.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
43
+ venv/lib/python3.10/site-packages/fontTools/misc/bezierTools.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
44
+ venv/lib/python3.10/site-packages/gradio/frpc_darwin_arm64_v0.2 filter=lfs diff=lfs merge=lfs -text
45
+ venv/lib/python3.10/site-packages/gradio/templates/cdn/assets/index-d9794b8f.js.map filter=lfs diff=lfs merge=lfs -text
46
+ venv/lib/python3.10/site-packages/gradio/templates/frontend/assets/index-0eddd93f.js.map filter=lfs diff=lfs merge=lfs -text
47
+ venv/lib/python3.10/site-packages/hf_transfer/hf_transfer.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
48
+ venv/lib/python3.10/site-packages/imgui/core.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
49
+ venv/lib/python3.10/site-packages/imgui/internal.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
50
+ venv/lib/python3.10/site-packages/numpy/.dylibs/libgfortran.5.dylib filter=lfs diff=lfs merge=lfs -text
51
+ venv/lib/python3.10/site-packages/numpy/.dylibs/libopenblas64_.0.dylib filter=lfs diff=lfs merge=lfs -text
52
+ venv/lib/python3.10/site-packages/numpy/core/_multiarray_umath.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
53
+ venv/lib/python3.10/site-packages/pandas/_libs/algos.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
54
+ venv/lib/python3.10/site-packages/pandas/_libs/groupby.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
55
+ venv/lib/python3.10/site-packages/pandas/_libs/hashtable.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
56
+ venv/lib/python3.10/site-packages/pandas/_libs/interval.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
57
+ venv/lib/python3.10/site-packages/pandas/_libs/join.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
58
+ venv/lib/python3.10/site-packages/scipy/.dylibs/libgfortran.5.dylib filter=lfs diff=lfs merge=lfs -text
59
+ venv/lib/python3.10/site-packages/scipy/.dylibs/libopenblas.0.dylib filter=lfs diff=lfs merge=lfs -text
60
+ venv/lib/python3.10/site-packages/scipy/linalg/_flapack.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
61
+ venv/lib/python3.10/site-packages/scipy/misc/face.dat filter=lfs diff=lfs merge=lfs -text
62
+ venv/lib/python3.10/site-packages/scipy/optimize/_highs/_highs_wrapper.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
63
+ venv/lib/python3.10/site-packages/scipy/sparse/_sparsetools.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
64
+ venv/lib/python3.10/site-packages/scipy/special/_ufuncs.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
65
+ venv/lib/python3.10/site-packages/scipy/special/cython_special.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
66
+ venv/lib/python3.10/site-packages/scipy/stats/_unuran/unuran_wrapper.cpython-310-darwin.so filter=lfs diff=lfs merge=lfs -text
67
+ venv/lib/python3.10/site-packages/torch/bin/protoc filter=lfs diff=lfs merge=lfs -text
68
+ venv/lib/python3.10/site-packages/torch/bin/protoc-3.13.0.0 filter=lfs diff=lfs merge=lfs -text
69
+ venv/lib/python3.10/site-packages/torch/lib/libtorch_cpu.dylib filter=lfs diff=lfs merge=lfs -text
70
+ venv/lib/python3.10/site-packages/torch/lib/libtorch_python.dylib filter=lfs diff=lfs merge=lfs -text
71
+ venv/lib/python3.10/site-packages/torchvision/.dylibs/libc++.1.0.dylib filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Created by .ignore support plugin (hsz.mobi)
2
+ ### Python template
3
+ # Byte-compiled / optimized / DLL files
4
+ __pycache__/
5
+ *.py[cod]
6
+ *$py.class
7
+
8
+ # C extensions
9
+ *.so
10
+
11
+ # Distribution / packaging
12
+ .Python
13
+ env/
14
+ build/
15
+ develop-eggs/
16
+ dist/
17
+ downloads/
18
+ eggs/
19
+ .eggs/
20
+ lib/
21
+ lib64/
22
+ parts/
23
+ sdist/
24
+ var/
25
+ *.egg-info/
26
+ .installed.cfg
27
+ *.egg
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .coverage
43
+ .coverage.*
44
+ .cache
45
+ nosetests.xml
46
+ coverage.xml
47
+ *,cover
48
+ .hypothesis/
49
+
50
+ # Translations
51
+ *.mo
52
+ *.pot
53
+
54
+ # Django stuff:
55
+ *.log
56
+ local_settings.py
57
+
58
+ # Flask stuff:
59
+ instance/
60
+ .webassets-cache
61
+
62
+ # Scrapy stuff:
63
+ .scrapy
64
+
65
+ # Sphinx documentation
66
+ docs/_build/
67
+
68
+ # PyBuilder
69
+ target/
70
+
71
+ # IPython Notebook
72
+ .ipynb_checkpoints
73
+
74
+ # pyenv
75
+ .python-version
76
+
77
+ # celery beat schedule file
78
+ celerybeat-schedule
79
+
80
+ # dotenv
81
+ .env
82
+
83
+ # virtualenv
84
+ venv/
85
+ ENV/
86
+
87
+ # Spyder project settings
88
+ .spyderproject
89
+
90
+ # Rope project settings
91
+ .ropeproject
92
+ ### VirtualEnv template
93
+ # Virtualenv
94
+ # http://iamzed.com/2009/05/07/a-primer-on-virtualenv/
95
+ .Python
96
+ [Bb]in
97
+ [Ii]nclude
98
+ [Ll]ib
99
+ [Ll]ib64
100
+ [Ll]ocal
101
+ [Ss]cripts
102
+ !scripts\download_model.bat
103
+ pyvenv.cfg
104
+ .venv
105
+ pip-selfcheck.json
106
+ ### JetBrains template
107
+ # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and Webstorm
108
+ # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
109
+
110
+ # User-specific stuff:
111
+ .idea/workspace.xml
112
+ .idea/tasks.xml
113
+ .idea/dictionaries
114
+ .idea/vcs.xml
115
+ .idea/jsLibraryMappings.xml
116
+
117
+ # Sensitive or high-churn files:
118
+ .idea/dataSources.ids
119
+ .idea/dataSources.xml
120
+ .idea/dataSources.local.xml
121
+ .idea/sqlDataSources.xml
122
+ .idea/dynamic.xml
123
+ .idea/uiDesigner.xml
124
+
125
+ # Gradle:
126
+ .idea/gradle.xml
127
+ .idea/libraries
128
+
129
+ # Mongo Explorer plugin:
130
+ .idea/mongoSettings.xml
131
+
132
+ .idea/
133
+
134
+ ## File-based project format:
135
+ *.iws
136
+
137
+ ## Plugin-specific files:
138
+
139
+ # IntelliJ
140
+ /out/
141
+
142
+ # mpeltonen/sbt-idea plugin
143
+ .idea_modules/
144
+
145
+ # JIRA plugin
146
+ atlassian-ide-plugin.xml
147
+
148
+ # Crashlytics plugin (for Android Studio and IntelliJ)
149
+ com_crashlytics_export_strings.xml
150
+ crashlytics.properties
151
+ crashlytics-build.properties
152
+ fabric.properties
153
+
154
+ # Mac related
155
+ .DS_Store
156
+
157
+ checkpoints
DragGAN.gif ADDED

Git LFS Details

  • SHA256: 2eab11d4dd1f11c2efacfcde385899b0164e241a7823eb050ab2e021f337225a
  • Pointer size: 133 Bytes
  • Size of remote file: 21.6 MB
LICENSE.txt ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2021, NVIDIA Corporation & affiliates. All rights reserved.
2
+
3
+
4
+ NVIDIA Source Code License for StyleGAN3
5
+
6
+
7
+ =======================================================================
8
+
9
+ 1. Definitions
10
+
11
+ "Licensor" means any person or entity that distributes its Work.
12
+
13
+ "Software" means the original work of authorship made available under
14
+ this License.
15
+
16
+ "Work" means the Software and any additions to or derivative works of
17
+ the Software that are made available under this License.
18
+
19
+ The terms "reproduce," "reproduction," "derivative works," and
20
+ "distribution" have the meaning as provided under U.S. copyright law;
21
+ provided, however, that for the purposes of this License, derivative
22
+ works shall not include works that remain separable from, or merely
23
+ link (or bind by name) to the interfaces of, the Work.
24
+
25
+ Works, including the Software, are "made available" under this License
26
+ by including in or with the Work either (a) a copyright notice
27
+ referencing the applicability of this License to the Work, or (b) a
28
+ copy of this License.
29
+
30
+ 2. License Grants
31
+
32
+ 2.1 Copyright Grant. Subject to the terms and conditions of this
33
+ License, each Licensor grants to you a perpetual, worldwide,
34
+ non-exclusive, royalty-free, copyright license to reproduce,
35
+ prepare derivative works of, publicly display, publicly perform,
36
+ sublicense and distribute its Work and any resulting derivative
37
+ works in any form.
38
+
39
+ 3. Limitations
40
+
41
+ 3.1 Redistribution. You may reproduce or distribute the Work only
42
+ if (a) you do so under this License, (b) you include a complete
43
+ copy of this License with your distribution, and (c) you retain
44
+ without modification any copyright, patent, trademark, or
45
+ attribution notices that are present in the Work.
46
+
47
+ 3.2 Derivative Works. You may specify that additional or different
48
+ terms apply to the use, reproduction, and distribution of your
49
+ derivative works of the Work ("Your Terms") only if (a) Your Terms
50
+ provide that the use limitation in Section 3.3 applies to your
51
+ derivative works, and (b) you identify the specific derivative
52
+ works that are subject to Your Terms. Notwithstanding Your Terms,
53
+ this License (including the redistribution requirements in Section
54
+ 3.1) will continue to apply to the Work itself.
55
+
56
+ 3.3 Use Limitation. The Work and any derivative works thereof only
57
+ may be used or intended for use non-commercially. Notwithstanding
58
+ the foregoing, NVIDIA and its affiliates may use the Work and any
59
+ derivative works commercially. As used herein, "non-commercially"
60
+ means for research or evaluation purposes only.
61
+
62
+ 3.4 Patent Claims. If you bring or threaten to bring a patent claim
63
+ against any Licensor (including any claim, cross-claim or
64
+ counterclaim in a lawsuit) to enforce any patents that you allege
65
+ are infringed by any Work, then your rights under this License from
66
+ such Licensor (including the grant in Section 2.1) will terminate
67
+ immediately.
68
+
69
+ 3.5 Trademarks. This License does not grant any rights to use any
70
+ Licensor’s or its affiliates’ names, logos, or trademarks, except
71
+ as necessary to reproduce the notices described in this License.
72
+
73
+ 3.6 Termination. If you violate any term of this License, then your
74
+ rights under this License (including the grant in Section 2.1) will
75
+ terminate immediately.
76
+
77
+ 4. Disclaimer of Warranty.
78
+
79
+ THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
80
+ KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
81
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
82
+ NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
83
+ THIS LICENSE.
84
+
85
+ 5. Limitation of Liability.
86
+
87
+ EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
88
+ THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
89
+ SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
90
+ INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
91
+ OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
92
+ (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
93
+ LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
94
+ COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
95
+ THE POSSIBILITY OF SUCH DAMAGES.
96
+
97
+ =======================================================================
README.md CHANGED
@@ -1,12 +1,109 @@
1
  ---
2
  title: DragGAN
3
- emoji: 😻
4
- colorFrom: gray
5
- colorTo: pink
6
  sdk: gradio
7
  sdk_version: 3.35.2
8
- app_file: app.py
9
- pinned: false
10
  ---
 
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: DragGAN
3
+ app_file: visualizer_drag_gradio.py
 
 
4
  sdk: gradio
5
  sdk_version: 3.35.2
 
 
6
  ---
7
+ <p align="center">
8
 
9
+ <h1 align="center">Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold</h1>
10
+ <p align="center">
11
+ <a href="https://xingangpan.github.io/"><strong>Xingang Pan</strong></a>
12
+ ·
13
+ <a href="https://ayushtewari.com/"><strong>Ayush Tewari</strong></a>
14
+ ·
15
+ <a href="https://people.mpi-inf.mpg.de/~tleimkue/"><strong>Thomas Leimkühler</strong></a>
16
+ ·
17
+ <a href="https://lingjie0206.github.io/"><strong>Lingjie Liu</strong></a>
18
+ ·
19
+ <a href="https://www.meka.page/"><strong>Abhimitra Meka</strong></a>
20
+ ·
21
+ <a href="http://www.mpi-inf.mpg.de/~theobalt/"><strong>Christian Theobalt</strong></a>
22
+ </p>
23
+ <h2 align="center">SIGGRAPH 2023 Conference Proceedings</h2>
24
+ <div align="center">
25
+ <img src="DragGAN.gif", width="600">
26
+ </div>
27
+
28
+ <p align="center">
29
+ <br>
30
+ <a href="https://pytorch.org/get-started/locally/"><img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white"></a>
31
+ <a href="https://twitter.com/XingangP"><img alt='Twitter' src="https://img.shields.io/twitter/follow/XingangP?label=%40XingangP"></a>
32
+ <a href="https://arxiv.org/abs/2305.10973">
33
+ <img src='https://img.shields.io/badge/Paper-PDF-green?style=for-the-badge&logo=adobeacrobatreader&logoWidth=20&logoColor=white&labelColor=66cc00&color=94DD15' alt='Paper PDF'>
34
+ </a>
35
+ <a href='https://vcai.mpi-inf.mpg.de/projects/DragGAN/'>
36
+ <img src='https://img.shields.io/badge/DragGAN-Page-orange?style=for-the-badge&logo=Google%20chrome&logoColor=white&labelColor=D35400' alt='Project Page'></a>
37
+ <a href="https://colab.research.google.com/drive/1mey-IXPwQC_qSthI5hO-LTX7QL4ivtPh?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
38
+ </p>
39
+ </p>
40
+
41
+ ## Web Demos
42
+
43
+ [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg)](https://openxlab.org.cn/apps/detail/XingangPan/DragGAN)
44
+
45
+ <p align="left">
46
+ <a href="https://huggingface.co/spaces/radames/DragGan"><img alt="Huggingface" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DragGAN-orange"></a>
47
+ </p>
48
+
49
+ ## Requirements
50
+
51
+ If you have CUDA graphic card, please follow the requirements of [NVlabs/stylegan3](https://github.com/NVlabs/stylegan3#requirements).
52
+
53
+ Otherwise (for GPU acceleration on MacOS with Silicon Mac M1/M2, or just CPU) try the following:
54
+
55
+ ```sh
56
+ cat environment.yml | \
57
+ grep -v -E 'nvidia|cuda' > environment-no-nvidia.yml && \
58
+ conda env create -f environment-no-nvidia.yml
59
+ conda activate stylegan3
60
+
61
+ # On MacOS
62
+ export PYTORCH_ENABLE_MPS_FALLBACK=1
63
+ ```
64
+
65
+ ## Download pre-trained StyleGAN2 weights
66
+
67
+ To download pre-trained weights, simply run:
68
+ ```sh
69
+ sh scripts/download_model.sh
70
+ ```
71
+ If you want to try StyleGAN-Human and the Landscapes HQ (LHQ) dataset, please download weights from these links: [StyleGAN-Human](https://drive.google.com/file/d/1dlFEHbu-WzQWJl7nBBZYcTyo000H9hVm/view?usp=sharing), [LHQ](https://drive.google.com/file/d/16twEf0T9QINAEoMsWefoWiyhcTd-aiWc/view?usp=sharing), and put them under `./checkpoints`.
72
+
73
+ Feel free to try other pretrained StyleGAN.
74
+
75
+ ## Run DragGAN GUI
76
+
77
+ To start the DragGAN GUI, simply run:
78
+ ```sh
79
+ sh scripts/gui.sh
80
+ ```
81
+
82
+ This GUI supports editing GAN-generated images. To edit a real image, you need to first perform GAN inversion using tools like [PTI](https://github.com/danielroich/PTI). Then load the new latent code and model weights to the GUI.
83
+
84
+ You can run DragGAN Gradio demo as well:
85
+ ```sh
86
+ python visualizer_drag_gradio.py
87
+ ```
88
+
89
+ ## Acknowledgement
90
+
91
+ This code is developed based on [StyleGAN3](https://github.com/NVlabs/stylegan3). Part of the code is borrowed from [StyleGAN-Human](https://github.com/stylegan-human/StyleGAN-Human).
92
+
93
+ ## License
94
+
95
+ The code related to the DragGAN algorithm is licensed under [CC-BY-NC](https://creativecommons.org/licenses/by-nc/4.0/).
96
+ However, most of this project are available under a separate license terms: all codes used or modified from [StyleGAN3](https://github.com/NVlabs/stylegan3) is under the [Nvidia Source Code License](https://github.com/NVlabs/stylegan3/blob/main/LICENSE.txt).
97
+
98
+ Any form of use and derivative of this code must preserve the watermarking functionality showing "AI Generated".
99
+
100
+ ## BibTeX
101
+
102
+ ```bibtex
103
+ @inproceedings{pan2023draggan,
104
+ title={Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold},
105
+ author={Pan, Xingang and Tewari, Ayush, and Leimk{\"u}hler, Thomas and Liu, Lingjie and Meka, Abhimitra and Theobalt, Christian},
106
+ booktitle = {ACM SIGGRAPH 2023 Conference Proceedings},
107
+ year={2023}
108
+ }
109
+ ```
__pycache__/legacy.cpython-310.pyc ADDED
Binary file (15 kB). View file
 
arial.ttf ADDED
Binary file (276 kB). View file
 
checkpoints/stylegan2-afhqcat-512x512.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17a83abee464242f8bb40dc6363d33c2fb087066b68fc0147677fdbf21f7a7a9
3
+ size 363939583
checkpoints/stylegan2-car-config-f.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1618eee2b3ce87c4a3849442f7850ef12a478556bff035c8e09ee7e23b3794c
3
+ size 364027523
checkpoints/stylegan2-cat-config-f.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08940fd616cfaf6bc7b0286b5d1a0b3f70febb26e136d64716c8d3f5e9bd3883
3
+ size 357418027
checkpoints/stylegan2-ffhq-512x512.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2b1c92f41ce8a64c55f7a75ef06c4c0eef9e17b1eb29aae8c10fb37b3e60478
3
+ size 363939580
checkpoints/stylegan2_dogs_1024_pytorch.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9e93090d02916165a602c728c0e37458fc0c58fbc58e4d75bcd096bb81c7e8c
3
+ size 381630441
checkpoints/stylegan2_elephants_512_pytorch.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56504894f6d7121959af78a74148cf1e9d858e3710312efb11c41dbf27684363
3
+ size 363965313
checkpoints/stylegan2_horses_256_pytorch.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f100dc32e2731a293f3b31a9038416f72aa5cc30555b3315a82e19c065f81b0c
3
+ size 357336721
checkpoints/stylegan2_lions_512_pytorch.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a01ff8344521171b1a2eff1e9a51c1acbc48221bdc2594919187f66a3942bcc
3
+ size 363965313
dnnlib/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ from .util import EasyDict, make_cache_dir_path
dnnlib/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (215 Bytes). View file
 
dnnlib/__pycache__/util.cpython-310.pyc ADDED
Binary file (14 kB). View file
 
dnnlib/util.py ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ """Miscellaneous utility classes and functions."""
10
+
11
+ import ctypes
12
+ import fnmatch
13
+ import importlib
14
+ import inspect
15
+ import numpy as np
16
+ import os
17
+ import shutil
18
+ import sys
19
+ import types
20
+ import io
21
+ import pickle
22
+ import re
23
+ import requests
24
+ import html
25
+ import hashlib
26
+ import glob
27
+ import tempfile
28
+ import urllib
29
+ import urllib.request
30
+ import uuid
31
+
32
+ from distutils.util import strtobool
33
+ from typing import Any, List, Tuple, Union
34
+
35
+
36
+ # Util classes
37
+ # ------------------------------------------------------------------------------------------
38
+
39
+
40
+ class EasyDict(dict):
41
+ """Convenience class that behaves like a dict but allows access with the attribute syntax."""
42
+
43
+ def __getattr__(self, name: str) -> Any:
44
+ try:
45
+ return self[name]
46
+ except KeyError:
47
+ raise AttributeError(name)
48
+
49
+ def __setattr__(self, name: str, value: Any) -> None:
50
+ self[name] = value
51
+
52
+ def __delattr__(self, name: str) -> None:
53
+ del self[name]
54
+
55
+
56
+ class Logger(object):
57
+ """Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file."""
58
+
59
+ def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True):
60
+ self.file = None
61
+
62
+ if file_name is not None:
63
+ self.file = open(file_name, file_mode)
64
+
65
+ self.should_flush = should_flush
66
+ self.stdout = sys.stdout
67
+ self.stderr = sys.stderr
68
+
69
+ sys.stdout = self
70
+ sys.stderr = self
71
+
72
+ def __enter__(self) -> "Logger":
73
+ return self
74
+
75
+ def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
76
+ self.close()
77
+
78
+ def write(self, text: Union[str, bytes]) -> None:
79
+ """Write text to stdout (and a file) and optionally flush."""
80
+ if isinstance(text, bytes):
81
+ text = text.decode()
82
+ if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
83
+ return
84
+
85
+ if self.file is not None:
86
+ self.file.write(text)
87
+
88
+ self.stdout.write(text)
89
+
90
+ if self.should_flush:
91
+ self.flush()
92
+
93
+ def flush(self) -> None:
94
+ """Flush written text to both stdout and a file, if open."""
95
+ if self.file is not None:
96
+ self.file.flush()
97
+
98
+ self.stdout.flush()
99
+
100
+ def close(self) -> None:
101
+ """Flush, close possible files, and remove stdout/stderr mirroring."""
102
+ self.flush()
103
+
104
+ # if using multiple loggers, prevent closing in wrong order
105
+ if sys.stdout is self:
106
+ sys.stdout = self.stdout
107
+ if sys.stderr is self:
108
+ sys.stderr = self.stderr
109
+
110
+ if self.file is not None:
111
+ self.file.close()
112
+ self.file = None
113
+
114
+
115
+ # Cache directories
116
+ # ------------------------------------------------------------------------------------------
117
+
118
+ _dnnlib_cache_dir = None
119
+
120
+ def set_cache_dir(path: str) -> None:
121
+ global _dnnlib_cache_dir
122
+ _dnnlib_cache_dir = path
123
+
124
+ def make_cache_dir_path(*paths: str) -> str:
125
+ if _dnnlib_cache_dir is not None:
126
+ return os.path.join(_dnnlib_cache_dir, *paths)
127
+ if 'DNNLIB_CACHE_DIR' in os.environ:
128
+ return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths)
129
+ if 'HOME' in os.environ:
130
+ return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths)
131
+ if 'USERPROFILE' in os.environ:
132
+ return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths)
133
+ return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths)
134
+
135
+ # Small util functions
136
+ # ------------------------------------------------------------------------------------------
137
+
138
+
139
+ def format_time(seconds: Union[int, float]) -> str:
140
+ """Convert the seconds to human readable string with days, hours, minutes and seconds."""
141
+ s = int(np.rint(seconds))
142
+
143
+ if s < 60:
144
+ return "{0}s".format(s)
145
+ elif s < 60 * 60:
146
+ return "{0}m {1:02}s".format(s // 60, s % 60)
147
+ elif s < 24 * 60 * 60:
148
+ return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60)
149
+ else:
150
+ return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60)
151
+
152
+
153
+ def format_time_brief(seconds: Union[int, float]) -> str:
154
+ """Convert the seconds to human readable string with days, hours, minutes and seconds."""
155
+ s = int(np.rint(seconds))
156
+
157
+ if s < 60:
158
+ return "{0}s".format(s)
159
+ elif s < 60 * 60:
160
+ return "{0}m {1:02}s".format(s // 60, s % 60)
161
+ elif s < 24 * 60 * 60:
162
+ return "{0}h {1:02}m".format(s // (60 * 60), (s // 60) % 60)
163
+ else:
164
+ return "{0}d {1:02}h".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24)
165
+
166
+
167
+ def ask_yes_no(question: str) -> bool:
168
+ """Ask the user the question until the user inputs a valid answer."""
169
+ while True:
170
+ try:
171
+ print("{0} [y/n]".format(question))
172
+ return strtobool(input().lower())
173
+ except ValueError:
174
+ pass
175
+
176
+
177
+ def tuple_product(t: Tuple) -> Any:
178
+ """Calculate the product of the tuple elements."""
179
+ result = 1
180
+
181
+ for v in t:
182
+ result *= v
183
+
184
+ return result
185
+
186
+
187
+ _str_to_ctype = {
188
+ "uint8": ctypes.c_ubyte,
189
+ "uint16": ctypes.c_uint16,
190
+ "uint32": ctypes.c_uint32,
191
+ "uint64": ctypes.c_uint64,
192
+ "int8": ctypes.c_byte,
193
+ "int16": ctypes.c_int16,
194
+ "int32": ctypes.c_int32,
195
+ "int64": ctypes.c_int64,
196
+ "float32": ctypes.c_float,
197
+ "float64": ctypes.c_double
198
+ }
199
+
200
+
201
+ def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]:
202
+ """Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes."""
203
+ type_str = None
204
+
205
+ if isinstance(type_obj, str):
206
+ type_str = type_obj
207
+ elif hasattr(type_obj, "__name__"):
208
+ type_str = type_obj.__name__
209
+ elif hasattr(type_obj, "name"):
210
+ type_str = type_obj.name
211
+ else:
212
+ raise RuntimeError("Cannot infer type name from input")
213
+
214
+ assert type_str in _str_to_ctype.keys()
215
+
216
+ my_dtype = np.dtype(type_str)
217
+ my_ctype = _str_to_ctype[type_str]
218
+
219
+ assert my_dtype.itemsize == ctypes.sizeof(my_ctype)
220
+
221
+ return my_dtype, my_ctype
222
+
223
+
224
+ def is_pickleable(obj: Any) -> bool:
225
+ try:
226
+ with io.BytesIO() as stream:
227
+ pickle.dump(obj, stream)
228
+ return True
229
+ except:
230
+ return False
231
+
232
+
233
+ # Functionality to import modules/objects by name, and call functions by name
234
+ # ------------------------------------------------------------------------------------------
235
+
236
+ def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]:
237
+ """Searches for the underlying module behind the name to some python object.
238
+ Returns the module and the object name (original name with module part removed)."""
239
+
240
+ # allow convenience shorthands, substitute them by full names
241
+ obj_name = re.sub("^np.", "numpy.", obj_name)
242
+ obj_name = re.sub("^tf.", "tensorflow.", obj_name)
243
+
244
+ # list alternatives for (module_name, local_obj_name)
245
+ parts = obj_name.split(".")
246
+ name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1)]
247
+
248
+ # try each alternative in turn
249
+ for module_name, local_obj_name in name_pairs:
250
+ try:
251
+ module = importlib.import_module(module_name) # may raise ImportError
252
+ get_obj_from_module(module, local_obj_name) # may raise AttributeError
253
+ return module, local_obj_name
254
+ except:
255
+ pass
256
+
257
+ # maybe some of the modules themselves contain errors?
258
+ for module_name, _local_obj_name in name_pairs:
259
+ try:
260
+ importlib.import_module(module_name) # may raise ImportError
261
+ except ImportError:
262
+ if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"):
263
+ raise
264
+
265
+ # maybe the requested attribute is missing?
266
+ for module_name, local_obj_name in name_pairs:
267
+ try:
268
+ module = importlib.import_module(module_name) # may raise ImportError
269
+ get_obj_from_module(module, local_obj_name) # may raise AttributeError
270
+ except ImportError:
271
+ pass
272
+
273
+ # we are out of luck, but we have no idea why
274
+ raise ImportError(obj_name)
275
+
276
+
277
+ def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any:
278
+ """Traverses the object name and returns the last (rightmost) python object."""
279
+ if obj_name == '':
280
+ return module
281
+ obj = module
282
+ for part in obj_name.split("."):
283
+ obj = getattr(obj, part)
284
+ return obj
285
+
286
+
287
+ def get_obj_by_name(name: str) -> Any:
288
+ """Finds the python object with the given name."""
289
+ module, obj_name = get_module_from_obj_name(name)
290
+ return get_obj_from_module(module, obj_name)
291
+
292
+
293
+ def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any:
294
+ """Finds the python object with the given name and calls it as a function."""
295
+ assert func_name is not None
296
+ func_obj = get_obj_by_name(func_name)
297
+ assert callable(func_obj)
298
+ return func_obj(*args, **kwargs)
299
+
300
+
301
+ def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any:
302
+ """Finds the python class with the given name and constructs it with the given arguments."""
303
+ return call_func_by_name(*args, func_name=class_name, **kwargs)
304
+
305
+
306
+ def get_module_dir_by_obj_name(obj_name: str) -> str:
307
+ """Get the directory path of the module containing the given object name."""
308
+ module, _ = get_module_from_obj_name(obj_name)
309
+ return os.path.dirname(inspect.getfile(module))
310
+
311
+
312
+ def is_top_level_function(obj: Any) -> bool:
313
+ """Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'."""
314
+ return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__
315
+
316
+
317
+ def get_top_level_function_name(obj: Any) -> str:
318
+ """Return the fully-qualified name of a top-level function."""
319
+ assert is_top_level_function(obj)
320
+ module = obj.__module__
321
+ if module == '__main__':
322
+ module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0]
323
+ return module + "." + obj.__name__
324
+
325
+
326
+ # File system helpers
327
+ # ------------------------------------------------------------------------------------------
328
+
329
+ def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]:
330
+ """List all files recursively in a given directory while ignoring given file and directory names.
331
+ Returns list of tuples containing both absolute and relative paths."""
332
+ assert os.path.isdir(dir_path)
333
+ base_name = os.path.basename(os.path.normpath(dir_path))
334
+
335
+ if ignores is None:
336
+ ignores = []
337
+
338
+ result = []
339
+
340
+ for root, dirs, files in os.walk(dir_path, topdown=True):
341
+ for ignore_ in ignores:
342
+ dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)]
343
+
344
+ # dirs need to be edited in-place
345
+ for d in dirs_to_remove:
346
+ dirs.remove(d)
347
+
348
+ files = [f for f in files if not fnmatch.fnmatch(f, ignore_)]
349
+
350
+ absolute_paths = [os.path.join(root, f) for f in files]
351
+ relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths]
352
+
353
+ if add_base_to_relative:
354
+ relative_paths = [os.path.join(base_name, p) for p in relative_paths]
355
+
356
+ assert len(absolute_paths) == len(relative_paths)
357
+ result += zip(absolute_paths, relative_paths)
358
+
359
+ return result
360
+
361
+
362
+ def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None:
363
+ """Takes in a list of tuples of (src, dst) paths and copies files.
364
+ Will create all necessary directories."""
365
+ for file in files:
366
+ target_dir_name = os.path.dirname(file[1])
367
+
368
+ # will create all intermediate-level directories
369
+ if not os.path.exists(target_dir_name):
370
+ os.makedirs(target_dir_name)
371
+
372
+ shutil.copyfile(file[0], file[1])
373
+
374
+
375
+ # URL helpers
376
+ # ------------------------------------------------------------------------------------------
377
+
378
+ def is_url(obj: Any, allow_file_urls: bool = False) -> bool:
379
+ """Determine whether the given object is a valid URL string."""
380
+ if not isinstance(obj, str) or not "://" in obj:
381
+ return False
382
+ if allow_file_urls and obj.startswith('file://'):
383
+ return True
384
+ try:
385
+ res = requests.compat.urlparse(obj)
386
+ if not res.scheme or not res.netloc or not "." in res.netloc:
387
+ return False
388
+ res = requests.compat.urlparse(requests.compat.urljoin(obj, "/"))
389
+ if not res.scheme or not res.netloc or not "." in res.netloc:
390
+ return False
391
+ except:
392
+ return False
393
+ return True
394
+
395
+
396
+ def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any:
397
+ """Download the given URL and return a binary-mode file object to access the data."""
398
+ assert num_attempts >= 1
399
+ assert not (return_filename and (not cache))
400
+
401
+ # Doesn't look like an URL scheme so interpret it as a local filename.
402
+ if not re.match('^[a-z]+://', url):
403
+ return url if return_filename else open(url, "rb")
404
+
405
+ # Handle file URLs. This code handles unusual file:// patterns that
406
+ # arise on Windows:
407
+ #
408
+ # file:///c:/foo.txt
409
+ #
410
+ # which would translate to a local '/c:/foo.txt' filename that's
411
+ # invalid. Drop the forward slash for such pathnames.
412
+ #
413
+ # If you touch this code path, you should test it on both Linux and
414
+ # Windows.
415
+ #
416
+ # Some internet resources suggest using urllib.request.url2pathname() but
417
+ # but that converts forward slashes to backslashes and this causes
418
+ # its own set of problems.
419
+ if url.startswith('file://'):
420
+ filename = urllib.parse.urlparse(url).path
421
+ if re.match(r'^/[a-zA-Z]:', filename):
422
+ filename = filename[1:]
423
+ return filename if return_filename else open(filename, "rb")
424
+
425
+ assert is_url(url)
426
+
427
+ # Lookup from cache.
428
+ if cache_dir is None:
429
+ cache_dir = make_cache_dir_path('downloads')
430
+
431
+ url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
432
+ if cache:
433
+ cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*"))
434
+ if len(cache_files) == 1:
435
+ filename = cache_files[0]
436
+ return filename if return_filename else open(filename, "rb")
437
+
438
+ # Download.
439
+ url_name = None
440
+ url_data = None
441
+ with requests.Session() as session:
442
+ if verbose:
443
+ print("Downloading %s ..." % url, end="", flush=True)
444
+ for attempts_left in reversed(range(num_attempts)):
445
+ try:
446
+ with session.get(url) as res:
447
+ res.raise_for_status()
448
+ if len(res.content) == 0:
449
+ raise IOError("No data received")
450
+
451
+ if len(res.content) < 8192:
452
+ content_str = res.content.decode("utf-8")
453
+ if "download_warning" in res.headers.get("Set-Cookie", ""):
454
+ links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
455
+ if len(links) == 1:
456
+ url = requests.compat.urljoin(url, links[0])
457
+ raise IOError("Google Drive virus checker nag")
458
+ if "Google Drive - Quota exceeded" in content_str:
459
+ raise IOError("Google Drive download quota exceeded -- please try again later")
460
+
461
+ match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
462
+ url_name = match[1] if match else url
463
+ url_data = res.content
464
+ if verbose:
465
+ print(" done")
466
+ break
467
+ except KeyboardInterrupt:
468
+ raise
469
+ except:
470
+ if not attempts_left:
471
+ if verbose:
472
+ print(" failed")
473
+ raise
474
+ if verbose:
475
+ print(".", end="", flush=True)
476
+
477
+ # Save to cache.
478
+ if cache:
479
+ safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name)
480
+ cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name)
481
+ temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name)
482
+ os.makedirs(cache_dir, exist_ok=True)
483
+ with open(temp_file, "wb") as f:
484
+ f.write(url_data)
485
+ os.replace(temp_file, cache_file) # atomic
486
+ if return_filename:
487
+ return cache_file
488
+
489
+ # Return data as file object.
490
+ assert not return_filename
491
+ return io.BytesIO(url_data)
environment.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: stylegan3
2
+ channels:
3
+ - pytorch
4
+ - nvidia
5
+ dependencies:
6
+ - python >= 3.8
7
+ - pip
8
+ - numpy>=1.25
9
+ - click>=8.0
10
+ - pillow=9.4.0
11
+ - scipy=1.11.0
12
+ - pytorch>=2.0.1
13
+ - torchvision>=0.15.2
14
+ - cudatoolkit=11.1
15
+ - requests=2.26.0
16
+ - tqdm=4.62.2
17
+ - ninja=1.10.2
18
+ - matplotlib=3.4.2
19
+ - imageio=2.9.0
20
+ - pip:
21
+ - imgui==2.0.0
22
+ - glfw==2.6.1
23
+ - gradio==3.35.2
24
+ - pyopengl==3.1.5
25
+ - imageio-ffmpeg==0.4.3
26
+ # pyspng is currently broken on MacOS (see https://github.com/nurpax/pyspng/pull/6 for instance)
27
+ - pyspng-seunglab
gen_images.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ """Generate images using pretrained network pickle."""
10
+
11
+ import os
12
+ import re
13
+ from typing import List, Optional, Tuple, Union
14
+
15
+ import click
16
+ import dnnlib
17
+ import numpy as np
18
+ import PIL.Image
19
+ import torch
20
+
21
+ import legacy
22
+
23
+ #----------------------------------------------------------------------------
24
+
25
+ def parse_range(s: Union[str, List]) -> List[int]:
26
+ '''Parse a comma separated list of numbers or ranges and return a list of ints.
27
+
28
+ Example: '1,2,5-10' returns [1, 2, 5, 6, 7]
29
+ '''
30
+ if isinstance(s, list): return s
31
+ ranges = []
32
+ range_re = re.compile(r'^(\d+)-(\d+)$')
33
+ for p in s.split(','):
34
+ m = range_re.match(p)
35
+ if m:
36
+ ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
37
+ else:
38
+ ranges.append(int(p))
39
+ return ranges
40
+
41
+ #----------------------------------------------------------------------------
42
+
43
+ def parse_vec2(s: Union[str, Tuple[float, float]]) -> Tuple[float, float]:
44
+ '''Parse a floating point 2-vector of syntax 'a,b'.
45
+
46
+ Example:
47
+ '0,1' returns (0,1)
48
+ '''
49
+ if isinstance(s, tuple): return s
50
+ parts = s.split(',')
51
+ if len(parts) == 2:
52
+ return (float(parts[0]), float(parts[1]))
53
+ raise ValueError(f'cannot parse 2-vector {s}')
54
+
55
+ #----------------------------------------------------------------------------
56
+
57
+ def make_transform(translate: Tuple[float,float], angle: float):
58
+ m = np.eye(3)
59
+ s = np.sin(angle/360.0*np.pi*2)
60
+ c = np.cos(angle/360.0*np.pi*2)
61
+ m[0][0] = c
62
+ m[0][1] = s
63
+ m[0][2] = translate[0]
64
+ m[1][0] = -s
65
+ m[1][1] = c
66
+ m[1][2] = translate[1]
67
+ return m
68
+
69
+ #----------------------------------------------------------------------------
70
+
71
+ @click.command()
72
+ @click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
73
+ @click.option('--seeds', type=parse_range, help='List of random seeds (e.g., \'0,1,4-6\')', required=True)
74
+ @click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
75
+ @click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)')
76
+ @click.option('--noise-mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True)
77
+ @click.option('--translate', help='Translate XY-coordinate (e.g. \'0.3,1\')', type=parse_vec2, default='0,0', show_default=True, metavar='VEC2')
78
+ @click.option('--rotate', help='Rotation angle in degrees', type=float, default=0, show_default=True, metavar='ANGLE')
79
+ @click.option('--outdir', help='Where to save the output images', type=str, required=True, metavar='DIR')
80
+ def generate_images(
81
+ network_pkl: str,
82
+ seeds: List[int],
83
+ truncation_psi: float,
84
+ noise_mode: str,
85
+ outdir: str,
86
+ translate: Tuple[float,float],
87
+ rotate: float,
88
+ class_idx: Optional[int]
89
+ ):
90
+ """Generate images using pretrained network pickle.
91
+
92
+ Examples:
93
+
94
+ \b
95
+ # Generate an image using pre-trained AFHQv2 model ("Ours" in Figure 1, left).
96
+ python gen_images.py --outdir=out --trunc=1 --seeds=2 \\
97
+ --network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-afhqv2-512x512.pkl
98
+
99
+ \b
100
+ # Generate uncurated images with truncation using the MetFaces-U dataset
101
+ python gen_images.py --outdir=out --trunc=0.7 --seeds=600-605 \\
102
+ --network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-metfacesu-1024x1024.pkl
103
+ """
104
+
105
+ print('Loading networks from "%s"...' % network_pkl)
106
+ device = torch.device('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
107
+ dtype = torch.float32 if device.type == 'mps' else torch.float64
108
+ with dnnlib.util.open_url(network_pkl) as f:
109
+ G = legacy.load_network_pkl(f)['G_ema'].to(device, dtype=dtype) # type: ignore
110
+ # import pickle
111
+ # G = legacy.load_network_pkl(f)
112
+ # output = open('checkpoints/stylegan2-car-config-f-pt.pkl', 'wb')
113
+ # pickle.dump(G, output)
114
+
115
+ os.makedirs(outdir, exist_ok=True)
116
+
117
+ # Labels.
118
+ label = torch.zeros([1, G.c_dim], device=device)
119
+ if G.c_dim != 0:
120
+ if class_idx is None:
121
+ raise click.ClickException('Must specify class label with --class when using a conditional network')
122
+ label[:, class_idx] = 1
123
+ else:
124
+ if class_idx is not None:
125
+ print ('warn: --class=lbl ignored when running on an unconditional network')
126
+
127
+ # Generate images.
128
+ for seed_idx, seed in enumerate(seeds):
129
+ print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds)))
130
+ z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device, dtype=dtype)
131
+
132
+ # Construct an inverse rotation/translation matrix and pass to the generator. The
133
+ # generator expects this matrix as an inverse to avoid potentially failing numerical
134
+ # operations in the network.
135
+ if hasattr(G.synthesis, 'input'):
136
+ m = make_transform(translate, rotate)
137
+ m = np.linalg.inv(m)
138
+ G.synthesis.input.transform.copy_(torch.from_numpy(m))
139
+
140
+ img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode)
141
+ img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
142
+ PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/seed{seed:04d}.png')
143
+
144
+
145
+ #----------------------------------------------------------------------------
146
+
147
+ if __name__ == "__main__":
148
+ generate_images() # pylint: disable=no-value-for-parameter
149
+
150
+ #----------------------------------------------------------------------------
gradio_utils/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from .utils import (ImageMask, draw_mask_on_image, draw_points_on_image,
2
+ get_latest_points_pair, get_valid_mask,
3
+ on_change_single_global_state)
4
+
5
+ __all__ = [
6
+ 'draw_mask_on_image', 'draw_points_on_image',
7
+ 'on_change_single_global_state', 'get_latest_points_pair',
8
+ 'get_valid_mask', 'ImageMask'
9
+ ]
gradio_utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (402 Bytes). View file
 
gradio_utils/__pycache__/utils.cpython-310.pyc ADDED
Binary file (3.7 kB). View file
 
gradio_utils/utils.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ from PIL import Image, ImageDraw
4
+
5
+
6
+ class ImageMask(gr.components.Image):
7
+ """
8
+ Sets: source="canvas", tool="sketch"
9
+ """
10
+
11
+ is_template = True
12
+
13
+ def __init__(self, **kwargs):
14
+ super().__init__(source="upload",
15
+ tool="sketch",
16
+ interactive=False,
17
+ **kwargs)
18
+
19
+ def preprocess(self, x):
20
+ if x is None:
21
+ return x
22
+ if self.tool == "sketch" and self.source in ["upload", "webcam"
23
+ ] and type(x) != dict:
24
+ decode_image = gr.processing_utils.decode_base64_to_image(x)
25
+ width, height = decode_image.size
26
+ mask = np.ones((height, width, 4), dtype=np.uint8)
27
+ mask[..., -1] = 255
28
+ mask = self.postprocess(mask)
29
+ x = {'image': x, 'mask': mask}
30
+ return super().preprocess(x)
31
+
32
+
33
+ def get_valid_mask(mask: np.ndarray):
34
+ """Convert mask from gr.Image(0 to 255, RGBA) to binary mask.
35
+ """
36
+ if mask.ndim == 3:
37
+ mask_pil = Image.fromarray(mask).convert('L')
38
+ mask = np.array(mask_pil)
39
+ if mask.max() == 255:
40
+ mask = mask / 255
41
+ return mask
42
+
43
+
44
+ def draw_points_on_image(image,
45
+ points,
46
+ curr_point=None,
47
+ highlight_all=True,
48
+ radius_scale=0.01):
49
+ overlay_rgba = Image.new("RGBA", image.size, 0)
50
+ overlay_draw = ImageDraw.Draw(overlay_rgba)
51
+ for point_key, point in points.items():
52
+ if ((curr_point is not None and curr_point == point_key)
53
+ or highlight_all):
54
+ p_color = (255, 0, 0)
55
+ t_color = (0, 0, 255)
56
+
57
+ else:
58
+ p_color = (255, 0, 0, 35)
59
+ t_color = (0, 0, 255, 35)
60
+
61
+ rad_draw = int(image.size[0] * radius_scale)
62
+
63
+ p_start = point.get("start_temp", point["start"])
64
+ p_target = point["target"]
65
+
66
+ if p_start is not None and p_target is not None:
67
+ p_draw = int(p_start[0]), int(p_start[1])
68
+ t_draw = int(p_target[0]), int(p_target[1])
69
+
70
+ overlay_draw.line(
71
+ (p_draw[0], p_draw[1], t_draw[0], t_draw[1]),
72
+ fill=(255, 255, 0),
73
+ width=2,
74
+ )
75
+
76
+ if p_start is not None:
77
+ p_draw = int(p_start[0]), int(p_start[1])
78
+ overlay_draw.ellipse(
79
+ (
80
+ p_draw[0] - rad_draw,
81
+ p_draw[1] - rad_draw,
82
+ p_draw[0] + rad_draw,
83
+ p_draw[1] + rad_draw,
84
+ ),
85
+ fill=p_color,
86
+ )
87
+
88
+ if curr_point is not None and curr_point == point_key:
89
+ # overlay_draw.text(p_draw, "p", font=font, align="center", fill=(0, 0, 0))
90
+ overlay_draw.text(p_draw, "p", align="center", fill=(0, 0, 0))
91
+
92
+ if p_target is not None:
93
+ t_draw = int(p_target[0]), int(p_target[1])
94
+ overlay_draw.ellipse(
95
+ (
96
+ t_draw[0] - rad_draw,
97
+ t_draw[1] - rad_draw,
98
+ t_draw[0] + rad_draw,
99
+ t_draw[1] + rad_draw,
100
+ ),
101
+ fill=t_color,
102
+ )
103
+
104
+ if curr_point is not None and curr_point == point_key:
105
+ # overlay_draw.text(t_draw, "t", font=font, align="center", fill=(0, 0, 0))
106
+ overlay_draw.text(t_draw, "t", align="center", fill=(0, 0, 0))
107
+
108
+ return Image.alpha_composite(image.convert("RGBA"),
109
+ overlay_rgba).convert("RGB")
110
+
111
+
112
+ def draw_mask_on_image(image, mask):
113
+ im_mask = np.uint8(mask * 255)
114
+ im_mask_rgba = np.concatenate(
115
+ (
116
+ np.tile(im_mask[..., None], [1, 1, 3]),
117
+ 45 * np.ones(
118
+ (im_mask.shape[0], im_mask.shape[1], 1), dtype=np.uint8),
119
+ ),
120
+ axis=-1,
121
+ )
122
+ im_mask_rgba = Image.fromarray(im_mask_rgba).convert("RGBA")
123
+
124
+ return Image.alpha_composite(image.convert("RGBA"),
125
+ im_mask_rgba).convert("RGB")
126
+
127
+
128
+ def on_change_single_global_state(keys,
129
+ value,
130
+ global_state,
131
+ map_transform=None):
132
+ if map_transform is not None:
133
+ value = map_transform(value)
134
+
135
+ curr_state = global_state
136
+ if isinstance(keys, str):
137
+ last_key = keys
138
+
139
+ else:
140
+ for k in keys[:-1]:
141
+ curr_state = curr_state[k]
142
+
143
+ last_key = keys[-1]
144
+
145
+ curr_state[last_key] = value
146
+ return global_state
147
+
148
+
149
+ def get_latest_points_pair(points_dict):
150
+ if not points_dict:
151
+ return None
152
+ point_idx = list(points_dict.keys())
153
+ latest_point_idx = max(point_idx)
154
+ return latest_point_idx
gui_utils/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ # empty
gui_utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (151 Bytes). View file
 
gui_utils/__pycache__/gl_utils.cpython-310.pyc ADDED
Binary file (12.7 kB). View file
 
gui_utils/__pycache__/glfw_window.cpython-310.pyc ADDED
Binary file (7.75 kB). View file
 
gui_utils/__pycache__/imgui_utils.cpython-310.pyc ADDED
Binary file (5.81 kB). View file
 
gui_utils/__pycache__/imgui_window.cpython-310.pyc ADDED
Binary file (3.98 kB). View file
 
gui_utils/__pycache__/text_utils.cpython-310.pyc ADDED
Binary file (4.96 kB). View file
 
gui_utils/gl_utils.py ADDED
@@ -0,0 +1,416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ import math
10
+ import os
11
+ import functools
12
+ import contextlib
13
+ import numpy as np
14
+ import OpenGL.GL as gl
15
+ import OpenGL.GL.ARB.texture_float
16
+ import dnnlib
17
+
18
+ #----------------------------------------------------------------------------
19
+
20
+ def init_egl():
21
+ assert os.environ['PYOPENGL_PLATFORM'] == 'egl' # Must be set before importing OpenGL.
22
+ import OpenGL.EGL as egl
23
+ import ctypes
24
+
25
+ # Initialize EGL.
26
+ display = egl.eglGetDisplay(egl.EGL_DEFAULT_DISPLAY)
27
+ assert display != egl.EGL_NO_DISPLAY
28
+ major = ctypes.c_int32()
29
+ minor = ctypes.c_int32()
30
+ ok = egl.eglInitialize(display, major, minor)
31
+ assert ok
32
+ assert major.value * 10 + minor.value >= 14
33
+
34
+ # Choose config.
35
+ config_attribs = [
36
+ egl.EGL_RENDERABLE_TYPE, egl.EGL_OPENGL_BIT,
37
+ egl.EGL_SURFACE_TYPE, egl.EGL_PBUFFER_BIT,
38
+ egl.EGL_NONE
39
+ ]
40
+ configs = (ctypes.c_int32 * 1)()
41
+ num_configs = ctypes.c_int32()
42
+ ok = egl.eglChooseConfig(display, config_attribs, configs, 1, num_configs)
43
+ assert ok
44
+ assert num_configs.value == 1
45
+ config = configs[0]
46
+
47
+ # Create dummy pbuffer surface.
48
+ surface_attribs = [
49
+ egl.EGL_WIDTH, 1,
50
+ egl.EGL_HEIGHT, 1,
51
+ egl.EGL_NONE
52
+ ]
53
+ surface = egl.eglCreatePbufferSurface(display, config, surface_attribs)
54
+ assert surface != egl.EGL_NO_SURFACE
55
+
56
+ # Setup GL context.
57
+ ok = egl.eglBindAPI(egl.EGL_OPENGL_API)
58
+ assert ok
59
+ context = egl.eglCreateContext(display, config, egl.EGL_NO_CONTEXT, None)
60
+ assert context != egl.EGL_NO_CONTEXT
61
+ ok = egl.eglMakeCurrent(display, surface, surface, context)
62
+ assert ok
63
+
64
+ #----------------------------------------------------------------------------
65
+
66
+ _texture_formats = {
67
+ ('uint8', 1): dnnlib.EasyDict(type=gl.GL_UNSIGNED_BYTE, format=gl.GL_LUMINANCE, internalformat=gl.GL_LUMINANCE8),
68
+ ('uint8', 2): dnnlib.EasyDict(type=gl.GL_UNSIGNED_BYTE, format=gl.GL_LUMINANCE_ALPHA, internalformat=gl.GL_LUMINANCE8_ALPHA8),
69
+ ('uint8', 3): dnnlib.EasyDict(type=gl.GL_UNSIGNED_BYTE, format=gl.GL_RGB, internalformat=gl.GL_RGB8),
70
+ ('uint8', 4): dnnlib.EasyDict(type=gl.GL_UNSIGNED_BYTE, format=gl.GL_RGBA, internalformat=gl.GL_RGBA8),
71
+ ('float32', 1): dnnlib.EasyDict(type=gl.GL_FLOAT, format=gl.GL_LUMINANCE, internalformat=OpenGL.GL.ARB.texture_float.GL_LUMINANCE32F_ARB),
72
+ ('float32', 2): dnnlib.EasyDict(type=gl.GL_FLOAT, format=gl.GL_LUMINANCE_ALPHA, internalformat=OpenGL.GL.ARB.texture_float.GL_LUMINANCE_ALPHA32F_ARB),
73
+ ('float32', 3): dnnlib.EasyDict(type=gl.GL_FLOAT, format=gl.GL_RGB, internalformat=gl.GL_RGB32F),
74
+ ('float32', 4): dnnlib.EasyDict(type=gl.GL_FLOAT, format=gl.GL_RGBA, internalformat=gl.GL_RGBA32F),
75
+ }
76
+
77
+ def get_texture_format(dtype, channels):
78
+ return _texture_formats[(np.dtype(dtype).name, int(channels))]
79
+
80
+ #----------------------------------------------------------------------------
81
+
82
+ def prepare_texture_data(image):
83
+ image = np.asarray(image)
84
+ if image.ndim == 2:
85
+ image = image[:, :, np.newaxis]
86
+ if image.dtype.name == 'float64':
87
+ image = image.astype('float32')
88
+ return image
89
+
90
+ #----------------------------------------------------------------------------
91
+
92
+ def draw_pixels(image, *, pos=0, zoom=1, align=0, rint=True):
93
+ pos = np.broadcast_to(np.asarray(pos, dtype='float32'), [2])
94
+ zoom = np.broadcast_to(np.asarray(zoom, dtype='float32'), [2])
95
+ align = np.broadcast_to(np.asarray(align, dtype='float32'), [2])
96
+ image = prepare_texture_data(image)
97
+ height, width, channels = image.shape
98
+ size = zoom * [width, height]
99
+ pos = pos - size * align
100
+ if rint:
101
+ pos = np.rint(pos)
102
+ fmt = get_texture_format(image.dtype, channels)
103
+
104
+ gl.glPushAttrib(gl.GL_CURRENT_BIT | gl.GL_PIXEL_MODE_BIT)
105
+ gl.glPushClientAttrib(gl.GL_CLIENT_PIXEL_STORE_BIT)
106
+ gl.glRasterPos2f(pos[0], pos[1])
107
+ gl.glPixelZoom(zoom[0], -zoom[1])
108
+ gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1)
109
+ gl.glDrawPixels(width, height, fmt.format, fmt.type, image)
110
+ gl.glPopClientAttrib()
111
+ gl.glPopAttrib()
112
+
113
+ #----------------------------------------------------------------------------
114
+
115
+ def read_pixels(width, height, *, pos=0, dtype='uint8', channels=3):
116
+ pos = np.broadcast_to(np.asarray(pos, dtype='float32'), [2])
117
+ dtype = np.dtype(dtype)
118
+ fmt = get_texture_format(dtype, channels)
119
+ image = np.empty([height, width, channels], dtype=dtype)
120
+
121
+ gl.glPushClientAttrib(gl.GL_CLIENT_PIXEL_STORE_BIT)
122
+ gl.glPixelStorei(gl.GL_PACK_ALIGNMENT, 1)
123
+ gl.glReadPixels(int(np.round(pos[0])), int(np.round(pos[1])), width, height, fmt.format, fmt.type, image)
124
+ gl.glPopClientAttrib()
125
+ return np.flipud(image)
126
+
127
+ #----------------------------------------------------------------------------
128
+
129
+ class Texture:
130
+ def __init__(self, *, image=None, width=None, height=None, channels=None, dtype=None, bilinear=True, mipmap=True):
131
+ self.gl_id = None
132
+ self.bilinear = bilinear
133
+ self.mipmap = mipmap
134
+
135
+ # Determine size and dtype.
136
+ if image is not None:
137
+ image = prepare_texture_data(image)
138
+ self.height, self.width, self.channels = image.shape
139
+ self.dtype = image.dtype
140
+ else:
141
+ assert width is not None and height is not None
142
+ self.width = width
143
+ self.height = height
144
+ self.channels = channels if channels is not None else 3
145
+ self.dtype = np.dtype(dtype) if dtype is not None else np.uint8
146
+
147
+ # Validate size and dtype.
148
+ assert isinstance(self.width, int) and self.width >= 0
149
+ assert isinstance(self.height, int) and self.height >= 0
150
+ assert isinstance(self.channels, int) and self.channels >= 1
151
+ assert self.is_compatible(width=width, height=height, channels=channels, dtype=dtype)
152
+
153
+ # Create texture object.
154
+ self.gl_id = gl.glGenTextures(1)
155
+ with self.bind():
156
+ gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_S, gl.GL_CLAMP_TO_EDGE)
157
+ gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_T, gl.GL_CLAMP_TO_EDGE)
158
+ gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER, gl.GL_LINEAR if self.bilinear else gl.GL_NEAREST)
159
+ gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER, gl.GL_LINEAR_MIPMAP_LINEAR if self.mipmap else gl.GL_NEAREST)
160
+ self.update(image)
161
+
162
+ def delete(self):
163
+ if self.gl_id is not None:
164
+ gl.glDeleteTextures([self.gl_id])
165
+ self.gl_id = None
166
+
167
+ def __del__(self):
168
+ try:
169
+ self.delete()
170
+ except:
171
+ pass
172
+
173
+ @contextlib.contextmanager
174
+ def bind(self):
175
+ prev_id = gl.glGetInteger(gl.GL_TEXTURE_BINDING_2D)
176
+ gl.glBindTexture(gl.GL_TEXTURE_2D, self.gl_id)
177
+ yield
178
+ gl.glBindTexture(gl.GL_TEXTURE_2D, prev_id)
179
+
180
+ def update(self, image):
181
+ if image is not None:
182
+ image = prepare_texture_data(image)
183
+ assert self.is_compatible(image=image)
184
+ with self.bind():
185
+ fmt = get_texture_format(self.dtype, self.channels)
186
+ gl.glPushClientAttrib(gl.GL_CLIENT_PIXEL_STORE_BIT)
187
+ gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1)
188
+ gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, fmt.internalformat, self.width, self.height, 0, fmt.format, fmt.type, image)
189
+ if self.mipmap:
190
+ gl.glGenerateMipmap(gl.GL_TEXTURE_2D)
191
+ gl.glPopClientAttrib()
192
+
193
+ def draw(self, *, pos=0, zoom=1, align=0, rint=False, color=1, alpha=1, rounding=0):
194
+ zoom = np.broadcast_to(np.asarray(zoom, dtype='float32'), [2])
195
+ size = zoom * [self.width, self.height]
196
+ with self.bind():
197
+ gl.glPushAttrib(gl.GL_ENABLE_BIT)
198
+ gl.glEnable(gl.GL_TEXTURE_2D)
199
+ draw_rect(pos=pos, size=size, align=align, rint=rint, color=color, alpha=alpha, rounding=rounding)
200
+ gl.glPopAttrib()
201
+
202
+ def is_compatible(self, *, image=None, width=None, height=None, channels=None, dtype=None): # pylint: disable=too-many-return-statements
203
+ if image is not None:
204
+ if image.ndim != 3:
205
+ return False
206
+ ih, iw, ic = image.shape
207
+ if not self.is_compatible(width=iw, height=ih, channels=ic, dtype=image.dtype):
208
+ return False
209
+ if width is not None and self.width != width:
210
+ return False
211
+ if height is not None and self.height != height:
212
+ return False
213
+ if channels is not None and self.channels != channels:
214
+ return False
215
+ if dtype is not None and self.dtype != dtype:
216
+ return False
217
+ return True
218
+
219
+ #----------------------------------------------------------------------------
220
+
221
+ class Framebuffer:
222
+ def __init__(self, *, texture=None, width=None, height=None, channels=None, dtype=None, msaa=0):
223
+ self.texture = texture
224
+ self.gl_id = None
225
+ self.gl_color = None
226
+ self.gl_depth_stencil = None
227
+ self.msaa = msaa
228
+
229
+ # Determine size and dtype.
230
+ if texture is not None:
231
+ assert isinstance(self.texture, Texture)
232
+ self.width = texture.width
233
+ self.height = texture.height
234
+ self.channels = texture.channels
235
+ self.dtype = texture.dtype
236
+ else:
237
+ assert width is not None and height is not None
238
+ self.width = width
239
+ self.height = height
240
+ self.channels = channels if channels is not None else 4
241
+ self.dtype = np.dtype(dtype) if dtype is not None else np.float32
242
+
243
+ # Validate size and dtype.
244
+ assert isinstance(self.width, int) and self.width >= 0
245
+ assert isinstance(self.height, int) and self.height >= 0
246
+ assert isinstance(self.channels, int) and self.channels >= 1
247
+ assert width is None or width == self.width
248
+ assert height is None or height == self.height
249
+ assert channels is None or channels == self.channels
250
+ assert dtype is None or dtype == self.dtype
251
+
252
+ # Create framebuffer object.
253
+ self.gl_id = gl.glGenFramebuffers(1)
254
+ with self.bind():
255
+
256
+ # Setup color buffer.
257
+ if self.texture is not None:
258
+ assert self.msaa == 0
259
+ gl.glFramebufferTexture2D(gl.GL_FRAMEBUFFER, gl.GL_COLOR_ATTACHMENT0, gl.GL_TEXTURE_2D, self.texture.gl_id, 0)
260
+ else:
261
+ fmt = get_texture_format(self.dtype, self.channels)
262
+ self.gl_color = gl.glGenRenderbuffers(1)
263
+ gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, self.gl_color)
264
+ gl.glRenderbufferStorageMultisample(gl.GL_RENDERBUFFER, self.msaa, fmt.internalformat, self.width, self.height)
265
+ gl.glFramebufferRenderbuffer(gl.GL_FRAMEBUFFER, gl.GL_COLOR_ATTACHMENT0, gl.GL_RENDERBUFFER, self.gl_color)
266
+
267
+ # Setup depth/stencil buffer.
268
+ self.gl_depth_stencil = gl.glGenRenderbuffers(1)
269
+ gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, self.gl_depth_stencil)
270
+ gl.glRenderbufferStorageMultisample(gl.GL_RENDERBUFFER, self.msaa, gl.GL_DEPTH24_STENCIL8, self.width, self.height)
271
+ gl.glFramebufferRenderbuffer(gl.GL_FRAMEBUFFER, gl.GL_DEPTH_STENCIL_ATTACHMENT, gl.GL_RENDERBUFFER, self.gl_depth_stencil)
272
+
273
+ def delete(self):
274
+ if self.gl_id is not None:
275
+ gl.glDeleteFramebuffers([self.gl_id])
276
+ self.gl_id = None
277
+ if self.gl_color is not None:
278
+ gl.glDeleteRenderbuffers(1, [self.gl_color])
279
+ self.gl_color = None
280
+ if self.gl_depth_stencil is not None:
281
+ gl.glDeleteRenderbuffers(1, [self.gl_depth_stencil])
282
+ self.gl_depth_stencil = None
283
+
284
+ def __del__(self):
285
+ try:
286
+ self.delete()
287
+ except:
288
+ pass
289
+
290
+ @contextlib.contextmanager
291
+ def bind(self):
292
+ prev_fbo = gl.glGetInteger(gl.GL_FRAMEBUFFER_BINDING)
293
+ prev_rbo = gl.glGetInteger(gl.GL_RENDERBUFFER_BINDING)
294
+ gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, self.gl_id)
295
+ if self.width is not None and self.height is not None:
296
+ gl.glViewport(0, 0, self.width, self.height)
297
+ yield
298
+ gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, prev_fbo)
299
+ gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, prev_rbo)
300
+
301
+ def blit(self, dst=None):
302
+ assert dst is None or isinstance(dst, Framebuffer)
303
+ with self.bind():
304
+ gl.glBindFramebuffer(gl.GL_DRAW_FRAMEBUFFER, 0 if dst is None else dst.fbo)
305
+ gl.glBlitFramebuffer(0, 0, self.width, self.height, 0, 0, self.width, self.height, gl.GL_COLOR_BUFFER_BIT, gl.GL_NEAREST)
306
+
307
+ #----------------------------------------------------------------------------
308
+
309
+ def draw_shape(vertices, *, mode=gl.GL_TRIANGLE_FAN, pos=0, size=1, color=1, alpha=1):
310
+ assert vertices.ndim == 2 and vertices.shape[1] == 2
311
+ pos = np.broadcast_to(np.asarray(pos, dtype='float32'), [2])
312
+ size = np.broadcast_to(np.asarray(size, dtype='float32'), [2])
313
+ color = np.broadcast_to(np.asarray(color, dtype='float32'), [3])
314
+ alpha = np.clip(np.broadcast_to(np.asarray(alpha, dtype='float32'), []), 0, 1)
315
+
316
+ gl.glPushClientAttrib(gl.GL_CLIENT_VERTEX_ARRAY_BIT)
317
+ gl.glPushAttrib(gl.GL_CURRENT_BIT | gl.GL_TRANSFORM_BIT)
318
+ gl.glMatrixMode(gl.GL_MODELVIEW)
319
+ gl.glPushMatrix()
320
+
321
+ gl.glEnableClientState(gl.GL_VERTEX_ARRAY)
322
+ gl.glEnableClientState(gl.GL_TEXTURE_COORD_ARRAY)
323
+ gl.glVertexPointer(2, gl.GL_FLOAT, 0, vertices)
324
+ gl.glTexCoordPointer(2, gl.GL_FLOAT, 0, vertices)
325
+ gl.glTranslate(pos[0], pos[1], 0)
326
+ gl.glScale(size[0], size[1], 1)
327
+ gl.glColor4f(color[0] * alpha, color[1] * alpha, color[2] * alpha, alpha)
328
+ gl.glDrawArrays(mode, 0, vertices.shape[0])
329
+
330
+ gl.glPopMatrix()
331
+ gl.glPopAttrib()
332
+ gl.glPopClientAttrib()
333
+
334
+ #----------------------------------------------------------------------------
335
+
336
+ def draw_arrow(x1, y1, x2, y2, l=10, width=1.0):
337
+ # Compute the length and angle of the arrow
338
+ dx = x2 - x1
339
+ dy = y2 - y1
340
+ length = math.sqrt(dx**2 + dy**2)
341
+ if length < l:
342
+ return
343
+ angle = math.atan2(dy, dx)
344
+
345
+ # Save the current modelview matrix
346
+ gl.glPushMatrix()
347
+
348
+ # Translate and rotate the coordinate system
349
+ gl.glTranslatef(x1, y1, 0.0)
350
+ gl.glRotatef(angle * 180.0 / math.pi, 0.0, 0.0, 1.0)
351
+
352
+ # Set the line width
353
+ gl.glLineWidth(width)
354
+ # gl.glColor3f(0.75, 0.75, 0.75)
355
+
356
+ # Begin drawing lines
357
+ gl.glBegin(gl.GL_LINES)
358
+
359
+ # Draw the shaft of the arrow
360
+ gl.glVertex2f(0.0, 0.0)
361
+ gl.glVertex2f(length, 0.0)
362
+
363
+ # Draw the head of the arrow
364
+ gl.glVertex2f(length, 0.0)
365
+ gl.glVertex2f(length - 2 * l, l)
366
+ gl.glVertex2f(length, 0.0)
367
+ gl.glVertex2f(length - 2 * l, -l)
368
+
369
+ # End drawing lines
370
+ gl.glEnd()
371
+
372
+ # Restore the modelview matrix
373
+ gl.glPopMatrix()
374
+
375
+ #----------------------------------------------------------------------------
376
+
377
+ def draw_rect(*, pos=0, pos2=None, size=None, align=0, rint=False, color=1, alpha=1, rounding=0):
378
+ assert pos2 is None or size is None
379
+ pos = np.broadcast_to(np.asarray(pos, dtype='float32'), [2])
380
+ pos2 = np.broadcast_to(np.asarray(pos2, dtype='float32'), [2]) if pos2 is not None else None
381
+ size = np.broadcast_to(np.asarray(size, dtype='float32'), [2]) if size is not None else None
382
+ size = size if size is not None else pos2 - pos if pos2 is not None else np.array([1, 1], dtype='float32')
383
+ pos = pos - size * align
384
+ if rint:
385
+ pos = np.rint(pos)
386
+ rounding = np.broadcast_to(np.asarray(rounding, dtype='float32'), [2])
387
+ rounding = np.minimum(np.abs(rounding) / np.maximum(np.abs(size), 1e-8), 0.5)
388
+ if np.min(rounding) == 0:
389
+ rounding *= 0
390
+ vertices = _setup_rect(float(rounding[0]), float(rounding[1]))
391
+ draw_shape(vertices, mode=gl.GL_TRIANGLE_FAN, pos=pos, size=size, color=color, alpha=alpha)
392
+
393
+ @functools.lru_cache(maxsize=10000)
394
+ def _setup_rect(rx, ry):
395
+ t = np.linspace(0, np.pi / 2, 1 if max(rx, ry) == 0 else 64)
396
+ s = 1 - np.sin(t); c = 1 - np.cos(t)
397
+ x = [c * rx, 1 - s * rx, 1 - c * rx, s * rx]
398
+ y = [s * ry, c * ry, 1 - s * ry, 1 - c * ry]
399
+ v = np.stack([x, y], axis=-1).reshape(-1, 2)
400
+ return v.astype('float32')
401
+
402
+ #----------------------------------------------------------------------------
403
+
404
+ def draw_circle(*, center=0, radius=100, hole=0, color=1, alpha=1):
405
+ hole = np.broadcast_to(np.asarray(hole, dtype='float32'), [])
406
+ vertices = _setup_circle(float(hole))
407
+ draw_shape(vertices, mode=gl.GL_TRIANGLE_STRIP, pos=center, size=radius, color=color, alpha=alpha)
408
+
409
+ @functools.lru_cache(maxsize=10000)
410
+ def _setup_circle(hole):
411
+ t = np.linspace(0, np.pi * 2, 128)
412
+ s = np.sin(t); c = np.cos(t)
413
+ v = np.stack([c, s, c * hole, s * hole], axis=-1).reshape(-1, 2)
414
+ return v.astype('float32')
415
+
416
+ #----------------------------------------------------------------------------
gui_utils/glfw_window.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ import time
10
+ import glfw
11
+ import OpenGL.GL as gl
12
+ from . import gl_utils
13
+
14
+ #----------------------------------------------------------------------------
15
+
16
+ class GlfwWindow: # pylint: disable=too-many-public-methods
17
+ def __init__(self, *, title='GlfwWindow', window_width=1920, window_height=1080, deferred_show=True, close_on_esc=True):
18
+ self._glfw_window = None
19
+ self._drawing_frame = False
20
+ self._frame_start_time = None
21
+ self._frame_delta = 0
22
+ self._fps_limit = None
23
+ self._vsync = None
24
+ self._skip_frames = 0
25
+ self._deferred_show = deferred_show
26
+ self._close_on_esc = close_on_esc
27
+ self._esc_pressed = False
28
+ self._drag_and_drop_paths = None
29
+ self._capture_next_frame = False
30
+ self._captured_frame = None
31
+
32
+ # Create window.
33
+ glfw.init()
34
+ glfw.window_hint(glfw.VISIBLE, False)
35
+ self._glfw_window = glfw.create_window(width=window_width, height=window_height, title=title, monitor=None, share=None)
36
+ self._attach_glfw_callbacks()
37
+ self.make_context_current()
38
+
39
+ # Adjust window.
40
+ self.set_vsync(False)
41
+ self.set_window_size(window_width, window_height)
42
+ if not self._deferred_show:
43
+ glfw.show_window(self._glfw_window)
44
+
45
+ def close(self):
46
+ if self._drawing_frame:
47
+ self.end_frame()
48
+ if self._glfw_window is not None:
49
+ glfw.destroy_window(self._glfw_window)
50
+ self._glfw_window = None
51
+ #glfw.terminate() # Commented out to play it nice with other glfw clients.
52
+
53
+ def __del__(self):
54
+ try:
55
+ self.close()
56
+ except:
57
+ pass
58
+
59
+ @property
60
+ def window_width(self):
61
+ return self.content_width
62
+
63
+ @property
64
+ def window_height(self):
65
+ return self.content_height + self.title_bar_height
66
+
67
+ @property
68
+ def content_width(self):
69
+ width, _height = glfw.get_window_size(self._glfw_window)
70
+ return width
71
+
72
+ @property
73
+ def content_height(self):
74
+ _width, height = glfw.get_window_size(self._glfw_window)
75
+ return height
76
+
77
+ @property
78
+ def title_bar_height(self):
79
+ _left, top, _right, _bottom = glfw.get_window_frame_size(self._glfw_window)
80
+ return top
81
+
82
+ @property
83
+ def monitor_width(self):
84
+ _, _, width, _height = glfw.get_monitor_workarea(glfw.get_primary_monitor())
85
+ return width
86
+
87
+ @property
88
+ def monitor_height(self):
89
+ _, _, _width, height = glfw.get_monitor_workarea(glfw.get_primary_monitor())
90
+ return height
91
+
92
+ @property
93
+ def frame_delta(self):
94
+ return self._frame_delta
95
+
96
+ def set_title(self, title):
97
+ glfw.set_window_title(self._glfw_window, title)
98
+
99
+ def set_window_size(self, width, height):
100
+ width = min(width, self.monitor_width)
101
+ height = min(height, self.monitor_height)
102
+ glfw.set_window_size(self._glfw_window, width, max(height - self.title_bar_height, 0))
103
+ if width == self.monitor_width and height == self.monitor_height:
104
+ self.maximize()
105
+
106
+ def set_content_size(self, width, height):
107
+ self.set_window_size(width, height + self.title_bar_height)
108
+
109
+ def maximize(self):
110
+ glfw.maximize_window(self._glfw_window)
111
+
112
+ def set_position(self, x, y):
113
+ glfw.set_window_pos(self._glfw_window, x, y + self.title_bar_height)
114
+
115
+ def center(self):
116
+ self.set_position((self.monitor_width - self.window_width) // 2, (self.monitor_height - self.window_height) // 2)
117
+
118
+ def set_vsync(self, vsync):
119
+ vsync = bool(vsync)
120
+ if vsync != self._vsync:
121
+ glfw.swap_interval(1 if vsync else 0)
122
+ self._vsync = vsync
123
+
124
+ def set_fps_limit(self, fps_limit):
125
+ self._fps_limit = int(fps_limit)
126
+
127
+ def should_close(self):
128
+ return glfw.window_should_close(self._glfw_window) or (self._close_on_esc and self._esc_pressed)
129
+
130
+ def skip_frame(self):
131
+ self.skip_frames(1)
132
+
133
+ def skip_frames(self, num): # Do not update window for the next N frames.
134
+ self._skip_frames = max(self._skip_frames, int(num))
135
+
136
+ def is_skipping_frames(self):
137
+ return self._skip_frames > 0
138
+
139
+ def capture_next_frame(self):
140
+ self._capture_next_frame = True
141
+
142
+ def pop_captured_frame(self):
143
+ frame = self._captured_frame
144
+ self._captured_frame = None
145
+ return frame
146
+
147
+ def pop_drag_and_drop_paths(self):
148
+ paths = self._drag_and_drop_paths
149
+ self._drag_and_drop_paths = None
150
+ return paths
151
+
152
+ def draw_frame(self): # To be overridden by subclass.
153
+ self.begin_frame()
154
+ # Rendering code goes here.
155
+ self.end_frame()
156
+
157
+ def make_context_current(self):
158
+ if self._glfw_window is not None:
159
+ glfw.make_context_current(self._glfw_window)
160
+
161
+ def begin_frame(self):
162
+ # End previous frame.
163
+ if self._drawing_frame:
164
+ self.end_frame()
165
+
166
+ # Apply FPS limit.
167
+ if self._frame_start_time is not None and self._fps_limit is not None:
168
+ delay = self._frame_start_time - time.perf_counter() + 1 / self._fps_limit
169
+ if delay > 0:
170
+ time.sleep(delay)
171
+ cur_time = time.perf_counter()
172
+ if self._frame_start_time is not None:
173
+ self._frame_delta = cur_time - self._frame_start_time
174
+ self._frame_start_time = cur_time
175
+
176
+ # Process events.
177
+ glfw.poll_events()
178
+
179
+ # Begin frame.
180
+ self._drawing_frame = True
181
+ self.make_context_current()
182
+
183
+ # Initialize GL state.
184
+ gl.glViewport(0, 0, self.content_width, self.content_height)
185
+ gl.glMatrixMode(gl.GL_PROJECTION)
186
+ gl.glLoadIdentity()
187
+ gl.glTranslate(-1, 1, 0)
188
+ gl.glScale(2 / max(self.content_width, 1), -2 / max(self.content_height, 1), 1)
189
+ gl.glMatrixMode(gl.GL_MODELVIEW)
190
+ gl.glLoadIdentity()
191
+ gl.glEnable(gl.GL_BLEND)
192
+ gl.glBlendFunc(gl.GL_ONE, gl.GL_ONE_MINUS_SRC_ALPHA) # Pre-multiplied alpha.
193
+
194
+ # Clear.
195
+ gl.glClearColor(0, 0, 0, 1)
196
+ gl.glClear(gl.GL_COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT)
197
+
198
+ def end_frame(self):
199
+ assert self._drawing_frame
200
+ self._drawing_frame = False
201
+
202
+ # Skip frames if requested.
203
+ if self._skip_frames > 0:
204
+ self._skip_frames -= 1
205
+ return
206
+
207
+ # Capture frame if requested.
208
+ if self._capture_next_frame:
209
+ self._captured_frame = gl_utils.read_pixels(self.content_width, self.content_height)
210
+ self._capture_next_frame = False
211
+
212
+ # Update window.
213
+ if self._deferred_show:
214
+ glfw.show_window(self._glfw_window)
215
+ self._deferred_show = False
216
+ glfw.swap_buffers(self._glfw_window)
217
+
218
+ def _attach_glfw_callbacks(self):
219
+ glfw.set_key_callback(self._glfw_window, self._glfw_key_callback)
220
+ glfw.set_drop_callback(self._glfw_window, self._glfw_drop_callback)
221
+
222
+ def _glfw_key_callback(self, _window, key, _scancode, action, _mods):
223
+ if action == glfw.PRESS and key == glfw.KEY_ESCAPE:
224
+ self._esc_pressed = True
225
+
226
+ def _glfw_drop_callback(self, _window, paths):
227
+ self._drag_and_drop_paths = paths
228
+
229
+ #----------------------------------------------------------------------------
gui_utils/imgui_utils.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ import contextlib
10
+ import imgui
11
+
12
+ #----------------------------------------------------------------------------
13
+
14
+ def set_default_style(color_scheme='dark', spacing=9, indent=23, scrollbar=27):
15
+ s = imgui.get_style()
16
+ s.window_padding = [spacing, spacing]
17
+ s.item_spacing = [spacing, spacing]
18
+ s.item_inner_spacing = [spacing, spacing]
19
+ s.columns_min_spacing = spacing
20
+ s.indent_spacing = indent
21
+ s.scrollbar_size = scrollbar
22
+ s.frame_padding = [4, 3]
23
+ s.window_border_size = 1
24
+ s.child_border_size = 1
25
+ s.popup_border_size = 1
26
+ s.frame_border_size = 1
27
+ s.window_rounding = 0
28
+ s.child_rounding = 0
29
+ s.popup_rounding = 3
30
+ s.frame_rounding = 3
31
+ s.scrollbar_rounding = 3
32
+ s.grab_rounding = 3
33
+
34
+ getattr(imgui, f'style_colors_{color_scheme}')(s)
35
+ c0 = s.colors[imgui.COLOR_MENUBAR_BACKGROUND]
36
+ c1 = s.colors[imgui.COLOR_FRAME_BACKGROUND]
37
+ s.colors[imgui.COLOR_POPUP_BACKGROUND] = [x * 0.7 + y * 0.3 for x, y in zip(c0, c1)][:3] + [1]
38
+
39
+ #----------------------------------------------------------------------------
40
+
41
+ @contextlib.contextmanager
42
+ def grayed_out(cond=True):
43
+ if cond:
44
+ s = imgui.get_style()
45
+ text = s.colors[imgui.COLOR_TEXT_DISABLED]
46
+ grab = s.colors[imgui.COLOR_SCROLLBAR_GRAB]
47
+ back = s.colors[imgui.COLOR_MENUBAR_BACKGROUND]
48
+ imgui.push_style_color(imgui.COLOR_TEXT, *text)
49
+ imgui.push_style_color(imgui.COLOR_CHECK_MARK, *grab)
50
+ imgui.push_style_color(imgui.COLOR_SLIDER_GRAB, *grab)
51
+ imgui.push_style_color(imgui.COLOR_SLIDER_GRAB_ACTIVE, *grab)
52
+ imgui.push_style_color(imgui.COLOR_FRAME_BACKGROUND, *back)
53
+ imgui.push_style_color(imgui.COLOR_FRAME_BACKGROUND_HOVERED, *back)
54
+ imgui.push_style_color(imgui.COLOR_FRAME_BACKGROUND_ACTIVE, *back)
55
+ imgui.push_style_color(imgui.COLOR_BUTTON, *back)
56
+ imgui.push_style_color(imgui.COLOR_BUTTON_HOVERED, *back)
57
+ imgui.push_style_color(imgui.COLOR_BUTTON_ACTIVE, *back)
58
+ imgui.push_style_color(imgui.COLOR_HEADER, *back)
59
+ imgui.push_style_color(imgui.COLOR_HEADER_HOVERED, *back)
60
+ imgui.push_style_color(imgui.COLOR_HEADER_ACTIVE, *back)
61
+ imgui.push_style_color(imgui.COLOR_POPUP_BACKGROUND, *back)
62
+ yield
63
+ imgui.pop_style_color(14)
64
+ else:
65
+ yield
66
+
67
+ #----------------------------------------------------------------------------
68
+
69
+ @contextlib.contextmanager
70
+ def item_width(width=None):
71
+ if width is not None:
72
+ imgui.push_item_width(width)
73
+ yield
74
+ imgui.pop_item_width()
75
+ else:
76
+ yield
77
+
78
+ #----------------------------------------------------------------------------
79
+
80
+ def scoped_by_object_id(method):
81
+ def decorator(self, *args, **kwargs):
82
+ imgui.push_id(str(id(self)))
83
+ res = method(self, *args, **kwargs)
84
+ imgui.pop_id()
85
+ return res
86
+ return decorator
87
+
88
+ #----------------------------------------------------------------------------
89
+
90
+ def button(label, width=0, enabled=True):
91
+ with grayed_out(not enabled):
92
+ clicked = imgui.button(label, width=width)
93
+ clicked = clicked and enabled
94
+ return clicked
95
+
96
+ #----------------------------------------------------------------------------
97
+
98
+ def collapsing_header(text, visible=None, flags=0, default=False, enabled=True, show=True):
99
+ expanded = False
100
+ if show:
101
+ if default:
102
+ flags |= imgui.TREE_NODE_DEFAULT_OPEN
103
+ if not enabled:
104
+ flags |= imgui.TREE_NODE_LEAF
105
+ with grayed_out(not enabled):
106
+ expanded, visible = imgui.collapsing_header(text, visible=visible, flags=flags)
107
+ expanded = expanded and enabled
108
+ return expanded, visible
109
+
110
+ #----------------------------------------------------------------------------
111
+
112
+ def popup_button(label, width=0, enabled=True):
113
+ if button(label, width, enabled):
114
+ imgui.open_popup(label)
115
+ opened = imgui.begin_popup(label)
116
+ return opened
117
+
118
+ #----------------------------------------------------------------------------
119
+
120
+ def input_text(label, value, buffer_length, flags, width=None, help_text=''):
121
+ old_value = value
122
+ color = list(imgui.get_style().colors[imgui.COLOR_TEXT])
123
+ if value == '':
124
+ color[-1] *= 0.5
125
+ with item_width(width):
126
+ imgui.push_style_color(imgui.COLOR_TEXT, *color)
127
+ value = value if value != '' else help_text
128
+ changed, value = imgui.input_text(label, value, buffer_length, flags)
129
+ value = value if value != help_text else ''
130
+ imgui.pop_style_color(1)
131
+ if not flags & imgui.INPUT_TEXT_ENTER_RETURNS_TRUE:
132
+ changed = (value != old_value)
133
+ return changed, value
134
+
135
+ #----------------------------------------------------------------------------
136
+
137
+ def drag_previous_control(enabled=True):
138
+ dragging = False
139
+ dx = 0
140
+ dy = 0
141
+ if imgui.begin_drag_drop_source(imgui.DRAG_DROP_SOURCE_NO_PREVIEW_TOOLTIP):
142
+ if enabled:
143
+ dragging = True
144
+ dx, dy = imgui.get_mouse_drag_delta()
145
+ imgui.reset_mouse_drag_delta()
146
+ imgui.end_drag_drop_source()
147
+ return dragging, dx, dy
148
+
149
+ #----------------------------------------------------------------------------
150
+
151
+ def drag_button(label, width=0, enabled=True):
152
+ clicked = button(label, width=width, enabled=enabled)
153
+ dragging, dx, dy = drag_previous_control(enabled=enabled)
154
+ return clicked, dragging, dx, dy
155
+
156
+ #----------------------------------------------------------------------------
157
+
158
+ def drag_hidden_window(label, x, y, width, height, enabled=True):
159
+ imgui.push_style_color(imgui.COLOR_WINDOW_BACKGROUND, 0, 0, 0, 0)
160
+ imgui.push_style_color(imgui.COLOR_BORDER, 0, 0, 0, 0)
161
+ imgui.set_next_window_position(x, y)
162
+ imgui.set_next_window_size(width, height)
163
+ imgui.begin(label, closable=False, flags=(imgui.WINDOW_NO_TITLE_BAR | imgui.WINDOW_NO_RESIZE | imgui.WINDOW_NO_MOVE))
164
+ dragging, dx, dy = drag_previous_control(enabled=enabled)
165
+ imgui.end()
166
+ imgui.pop_style_color(2)
167
+ return dragging, dx, dy
168
+
169
+ #----------------------------------------------------------------------------
170
+
171
+ def click_hidden_window(label, x, y, width, height, img_w, img_h, enabled=True):
172
+ imgui.push_style_color(imgui.COLOR_WINDOW_BACKGROUND, 0, 0, 0, 0)
173
+ imgui.push_style_color(imgui.COLOR_BORDER, 0, 0, 0, 0)
174
+ imgui.set_next_window_position(x, y)
175
+ imgui.set_next_window_size(width, height)
176
+ imgui.begin(label, closable=False, flags=(imgui.WINDOW_NO_TITLE_BAR | imgui.WINDOW_NO_RESIZE | imgui.WINDOW_NO_MOVE))
177
+ clicked, down = False, False
178
+ img_x, img_y = 0, 0
179
+ if imgui.is_mouse_down():
180
+ posx, posy = imgui.get_mouse_pos()
181
+ if posx >= x and posx < x + width and posy >= y and posy < y + height:
182
+ if imgui.is_mouse_clicked():
183
+ clicked = True
184
+ down = True
185
+ img_x = round((posx - x) / (width - 1) * (img_w - 1))
186
+ img_y = round((posy - y) / (height - 1) * (img_h - 1))
187
+ imgui.end()
188
+ imgui.pop_style_color(2)
189
+ return clicked, down, img_x, img_y
190
+
191
+ #----------------------------------------------------------------------------
gui_utils/imgui_window.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ import os
10
+ import imgui
11
+ import imgui.integrations.glfw
12
+
13
+ from . import glfw_window
14
+ from . import imgui_utils
15
+ from . import text_utils
16
+
17
+ #----------------------------------------------------------------------------
18
+
19
+ class ImguiWindow(glfw_window.GlfwWindow):
20
+ def __init__(self, *, title='ImguiWindow', font=None, font_sizes=range(14,24), **glfw_kwargs):
21
+ if font is None:
22
+ font = text_utils.get_default_font()
23
+ font_sizes = {int(size) for size in font_sizes}
24
+ super().__init__(title=title, **glfw_kwargs)
25
+
26
+ # Init fields.
27
+ self._imgui_context = None
28
+ self._imgui_renderer = None
29
+ self._imgui_fonts = None
30
+ self._cur_font_size = max(font_sizes)
31
+
32
+ # Delete leftover imgui.ini to avoid unexpected behavior.
33
+ if os.path.isfile('imgui.ini'):
34
+ os.remove('imgui.ini')
35
+
36
+ # Init ImGui.
37
+ self._imgui_context = imgui.create_context()
38
+ self._imgui_renderer = _GlfwRenderer(self._glfw_window)
39
+ self._attach_glfw_callbacks()
40
+ imgui.get_io().ini_saving_rate = 0 # Disable creating imgui.ini at runtime.
41
+ imgui.get_io().mouse_drag_threshold = 0 # Improve behavior with imgui_utils.drag_custom().
42
+ self._imgui_fonts = {size: imgui.get_io().fonts.add_font_from_file_ttf(font, size) for size in font_sizes}
43
+ self._imgui_renderer.refresh_font_texture()
44
+
45
+ def close(self):
46
+ self.make_context_current()
47
+ self._imgui_fonts = None
48
+ if self._imgui_renderer is not None:
49
+ self._imgui_renderer.shutdown()
50
+ self._imgui_renderer = None
51
+ if self._imgui_context is not None:
52
+ #imgui.destroy_context(self._imgui_context) # Commented out to avoid creating imgui.ini at the end.
53
+ self._imgui_context = None
54
+ super().close()
55
+
56
+ def _glfw_key_callback(self, *args):
57
+ super()._glfw_key_callback(*args)
58
+ self._imgui_renderer.keyboard_callback(*args)
59
+
60
+ @property
61
+ def font_size(self):
62
+ return self._cur_font_size
63
+
64
+ @property
65
+ def spacing(self):
66
+ return round(self._cur_font_size * 0.4)
67
+
68
+ def set_font_size(self, target): # Applied on next frame.
69
+ self._cur_font_size = min((abs(key - target), key) for key in self._imgui_fonts.keys())[1]
70
+
71
+ def begin_frame(self):
72
+ # Begin glfw frame.
73
+ super().begin_frame()
74
+
75
+ # Process imgui events.
76
+ self._imgui_renderer.mouse_wheel_multiplier = self._cur_font_size / 10
77
+ if self.content_width > 0 and self.content_height > 0:
78
+ self._imgui_renderer.process_inputs()
79
+
80
+ # Begin imgui frame.
81
+ imgui.new_frame()
82
+ imgui.push_font(self._imgui_fonts[self._cur_font_size])
83
+ imgui_utils.set_default_style(spacing=self.spacing, indent=self.font_size, scrollbar=self.font_size+4)
84
+
85
+ def end_frame(self):
86
+ imgui.pop_font()
87
+ imgui.render()
88
+ imgui.end_frame()
89
+ self._imgui_renderer.render(imgui.get_draw_data())
90
+ super().end_frame()
91
+
92
+ #----------------------------------------------------------------------------
93
+ # Wrapper class for GlfwRenderer to fix a mouse wheel bug on Linux.
94
+
95
+ class _GlfwRenderer(imgui.integrations.glfw.GlfwRenderer):
96
+ def __init__(self, *args, **kwargs):
97
+ super().__init__(*args, **kwargs)
98
+ self.mouse_wheel_multiplier = 1
99
+
100
+ def scroll_callback(self, window, x_offset, y_offset):
101
+ self.io.mouse_wheel += y_offset * self.mouse_wheel_multiplier
102
+
103
+ #----------------------------------------------------------------------------
gui_utils/text_utils.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ import functools
10
+ from typing import Optional
11
+
12
+ import dnnlib
13
+ import numpy as np
14
+ import PIL.Image
15
+ import PIL.ImageFont
16
+ import scipy.ndimage
17
+
18
+ from . import gl_utils
19
+
20
+ #----------------------------------------------------------------------------
21
+
22
+ def get_default_font():
23
+ url = 'http://fonts.gstatic.com/s/opensans/v17/mem8YaGs126MiZpBA-U1UpcaXcl0Aw.ttf' # Open Sans regular
24
+ return dnnlib.util.open_url(url, return_filename=True)
25
+
26
+ #----------------------------------------------------------------------------
27
+
28
+ @functools.lru_cache(maxsize=None)
29
+ def get_pil_font(font=None, size=32):
30
+ if font is None:
31
+ font = get_default_font()
32
+ return PIL.ImageFont.truetype(font=font, size=size)
33
+
34
+ #----------------------------------------------------------------------------
35
+
36
+ def get_array(string, *, dropshadow_radius: int=None, **kwargs):
37
+ if dropshadow_radius is not None:
38
+ offset_x = int(np.ceil(dropshadow_radius*2/3))
39
+ offset_y = int(np.ceil(dropshadow_radius*2/3))
40
+ return _get_array_priv(string, dropshadow_radius=dropshadow_radius, offset_x=offset_x, offset_y=offset_y, **kwargs)
41
+ else:
42
+ return _get_array_priv(string, **kwargs)
43
+
44
+ @functools.lru_cache(maxsize=10000)
45
+ def _get_array_priv(
46
+ string: str, *,
47
+ size: int = 32,
48
+ max_width: Optional[int]=None,
49
+ max_height: Optional[int]=None,
50
+ min_size=10,
51
+ shrink_coef=0.8,
52
+ dropshadow_radius: int=None,
53
+ offset_x: int=None,
54
+ offset_y: int=None,
55
+ **kwargs
56
+ ):
57
+ cur_size = size
58
+ array = None
59
+ while True:
60
+ if dropshadow_radius is not None:
61
+ # separate implementation for dropshadow text rendering
62
+ array = _get_array_impl_dropshadow(string, size=cur_size, radius=dropshadow_radius, offset_x=offset_x, offset_y=offset_y, **kwargs)
63
+ else:
64
+ array = _get_array_impl(string, size=cur_size, **kwargs)
65
+ height, width, _ = array.shape
66
+ if (max_width is None or width <= max_width) and (max_height is None or height <= max_height) or (cur_size <= min_size):
67
+ break
68
+ cur_size = max(int(cur_size * shrink_coef), min_size)
69
+ return array
70
+
71
+ #----------------------------------------------------------------------------
72
+
73
+ @functools.lru_cache(maxsize=10000)
74
+ def _get_array_impl(string, *, font=None, size=32, outline=0, outline_pad=3, outline_coef=3, outline_exp=2, line_pad: int=None):
75
+ pil_font = get_pil_font(font=font, size=size)
76
+ lines = [pil_font.getmask(line, 'L') for line in string.split('\n')]
77
+ lines = [np.array(line, dtype=np.uint8).reshape([line.size[1], line.size[0]]) for line in lines]
78
+ width = max(line.shape[1] for line in lines)
79
+ lines = [np.pad(line, ((0, 0), (0, width - line.shape[1])), mode='constant') for line in lines]
80
+ line_spacing = line_pad if line_pad is not None else size // 2
81
+ lines = [np.pad(line, ((0, line_spacing), (0, 0)), mode='constant') for line in lines[:-1]] + lines[-1:]
82
+ mask = np.concatenate(lines, axis=0)
83
+ alpha = mask
84
+ if outline > 0:
85
+ mask = np.pad(mask, int(np.ceil(outline * outline_pad)), mode='constant', constant_values=0)
86
+ alpha = mask.astype(np.float32) / 255
87
+ alpha = scipy.ndimage.gaussian_filter(alpha, outline)
88
+ alpha = 1 - np.maximum(1 - alpha * outline_coef, 0) ** outline_exp
89
+ alpha = (alpha * 255 + 0.5).clip(0, 255).astype(np.uint8)
90
+ alpha = np.maximum(alpha, mask)
91
+ return np.stack([mask, alpha], axis=-1)
92
+
93
+ #----------------------------------------------------------------------------
94
+
95
+ @functools.lru_cache(maxsize=10000)
96
+ def _get_array_impl_dropshadow(string, *, font=None, size=32, radius: int, offset_x: int, offset_y: int, line_pad: int=None, **kwargs):
97
+ assert (offset_x > 0) and (offset_y > 0)
98
+ pil_font = get_pil_font(font=font, size=size)
99
+ lines = [pil_font.getmask(line, 'L') for line in string.split('\n')]
100
+ lines = [np.array(line, dtype=np.uint8).reshape([line.size[1], line.size[0]]) for line in lines]
101
+ width = max(line.shape[1] for line in lines)
102
+ lines = [np.pad(line, ((0, 0), (0, width - line.shape[1])), mode='constant') for line in lines]
103
+ line_spacing = line_pad if line_pad is not None else size // 2
104
+ lines = [np.pad(line, ((0, line_spacing), (0, 0)), mode='constant') for line in lines[:-1]] + lines[-1:]
105
+ mask = np.concatenate(lines, axis=0)
106
+ alpha = mask
107
+
108
+ mask = np.pad(mask, 2*radius + max(abs(offset_x), abs(offset_y)), mode='constant', constant_values=0)
109
+ alpha = mask.astype(np.float32) / 255
110
+ alpha = scipy.ndimage.gaussian_filter(alpha, radius)
111
+ alpha = 1 - np.maximum(1 - alpha * 1.5, 0) ** 1.4
112
+ alpha = (alpha * 255 + 0.5).clip(0, 255).astype(np.uint8)
113
+ alpha = np.pad(alpha, [(offset_y, 0), (offset_x, 0)], mode='constant')[:-offset_y, :-offset_x]
114
+ alpha = np.maximum(alpha, mask)
115
+ return np.stack([mask, alpha], axis=-1)
116
+
117
+ #----------------------------------------------------------------------------
118
+
119
+ @functools.lru_cache(maxsize=10000)
120
+ def get_texture(string, bilinear=True, mipmap=True, **kwargs):
121
+ return gl_utils.Texture(image=get_array(string, **kwargs), bilinear=bilinear, mipmap=mipmap)
122
+
123
+ #----------------------------------------------------------------------------
legacy.py ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ """Converting legacy network pickle into the new format."""
10
+
11
+ import click
12
+ import pickle
13
+ import re
14
+ import copy
15
+ import numpy as np
16
+ import torch
17
+ import dnnlib
18
+ from torch_utils import misc
19
+
20
+ #----------------------------------------------------------------------------
21
+
22
+ def load_network_pkl(f, force_fp16=False):
23
+ data = _LegacyUnpickler(f).load()
24
+
25
+ # Legacy TensorFlow pickle => convert.
26
+ if isinstance(data, tuple) and len(data) == 3 and all(isinstance(net, _TFNetworkStub) for net in data):
27
+ tf_G, tf_D, tf_Gs = data
28
+ G = convert_tf_generator(tf_G)
29
+ D = convert_tf_discriminator(tf_D)
30
+ G_ema = convert_tf_generator(tf_Gs)
31
+ data = dict(G=G, D=D, G_ema=G_ema)
32
+
33
+ # Add missing fields.
34
+ if 'training_set_kwargs' not in data:
35
+ data['training_set_kwargs'] = None
36
+ if 'augment_pipe' not in data:
37
+ data['augment_pipe'] = None
38
+
39
+ # Validate contents.
40
+ assert isinstance(data['G'], torch.nn.Module)
41
+ assert isinstance(data['D'], torch.nn.Module)
42
+ assert isinstance(data['G_ema'], torch.nn.Module)
43
+ assert isinstance(data['training_set_kwargs'], (dict, type(None)))
44
+ assert isinstance(data['augment_pipe'], (torch.nn.Module, type(None)))
45
+
46
+ # Force FP16.
47
+ if force_fp16:
48
+ for key in ['G', 'D', 'G_ema']:
49
+ old = data[key]
50
+ kwargs = copy.deepcopy(old.init_kwargs)
51
+ fp16_kwargs = kwargs.get('synthesis_kwargs', kwargs)
52
+ fp16_kwargs.num_fp16_res = 4
53
+ fp16_kwargs.conv_clamp = 256
54
+ if kwargs != old.init_kwargs:
55
+ new = type(old)(**kwargs).eval().requires_grad_(False)
56
+ misc.copy_params_and_buffers(old, new, require_all=True)
57
+ data[key] = new
58
+ return data
59
+
60
+ #----------------------------------------------------------------------------
61
+
62
+ class _TFNetworkStub(dnnlib.EasyDict):
63
+ pass
64
+
65
+ class _LegacyUnpickler(pickle.Unpickler):
66
+ def find_class(self, module, name):
67
+ if module == 'dnnlib.tflib.network' and name == 'Network':
68
+ return _TFNetworkStub
69
+ return super().find_class(module, name)
70
+
71
+ #----------------------------------------------------------------------------
72
+
73
+ def _collect_tf_params(tf_net):
74
+ # pylint: disable=protected-access
75
+ tf_params = dict()
76
+ def recurse(prefix, tf_net):
77
+ for name, value in tf_net.variables:
78
+ tf_params[prefix + name] = value
79
+ for name, comp in tf_net.components.items():
80
+ recurse(prefix + name + '/', comp)
81
+ recurse('', tf_net)
82
+ return tf_params
83
+
84
+ #----------------------------------------------------------------------------
85
+
86
+ def _populate_module_params(module, *patterns):
87
+ for name, tensor in misc.named_params_and_buffers(module):
88
+ found = False
89
+ value = None
90
+ for pattern, value_fn in zip(patterns[0::2], patterns[1::2]):
91
+ match = re.fullmatch(pattern, name)
92
+ if match:
93
+ found = True
94
+ if value_fn is not None:
95
+ value = value_fn(*match.groups())
96
+ break
97
+ try:
98
+ assert found
99
+ if value is not None:
100
+ tensor.copy_(torch.from_numpy(np.array(value)))
101
+ except:
102
+ print(name, list(tensor.shape))
103
+ raise
104
+
105
+ #----------------------------------------------------------------------------
106
+
107
+ def convert_tf_generator(tf_G):
108
+ if tf_G.version < 4:
109
+ raise ValueError('TensorFlow pickle version too low')
110
+
111
+ # Collect kwargs.
112
+ tf_kwargs = tf_G.static_kwargs
113
+ known_kwargs = set()
114
+ def kwarg(tf_name, default=None, none=None):
115
+ known_kwargs.add(tf_name)
116
+ val = tf_kwargs.get(tf_name, default)
117
+ return val if val is not None else none
118
+
119
+ # Convert kwargs.
120
+ from training import networks_stylegan2
121
+ network_class = networks_stylegan2.Generator
122
+ kwargs = dnnlib.EasyDict(
123
+ z_dim = kwarg('latent_size', 512),
124
+ c_dim = kwarg('label_size', 0),
125
+ w_dim = kwarg('dlatent_size', 512),
126
+ img_resolution = kwarg('resolution', 1024),
127
+ img_channels = kwarg('num_channels', 3),
128
+ channel_base = kwarg('fmap_base', 16384) * 2,
129
+ channel_max = kwarg('fmap_max', 512),
130
+ num_fp16_res = kwarg('num_fp16_res', 0),
131
+ conv_clamp = kwarg('conv_clamp', None),
132
+ architecture = kwarg('architecture', 'skip'),
133
+ resample_filter = kwarg('resample_kernel', [1,3,3,1]),
134
+ use_noise = kwarg('use_noise', True),
135
+ activation = kwarg('nonlinearity', 'lrelu'),
136
+ mapping_kwargs = dnnlib.EasyDict(
137
+ num_layers = kwarg('mapping_layers', 8),
138
+ embed_features = kwarg('label_fmaps', None),
139
+ layer_features = kwarg('mapping_fmaps', None),
140
+ activation = kwarg('mapping_nonlinearity', 'lrelu'),
141
+ lr_multiplier = kwarg('mapping_lrmul', 0.01),
142
+ w_avg_beta = kwarg('w_avg_beta', 0.995, none=1),
143
+ ),
144
+ )
145
+
146
+ # Check for unknown kwargs.
147
+ kwarg('truncation_psi')
148
+ kwarg('truncation_cutoff')
149
+ kwarg('style_mixing_prob')
150
+ kwarg('structure')
151
+ kwarg('conditioning')
152
+ kwarg('fused_modconv')
153
+ unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
154
+ if len(unknown_kwargs) > 0:
155
+ raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0])
156
+
157
+ # Collect params.
158
+ tf_params = _collect_tf_params(tf_G)
159
+ for name, value in list(tf_params.items()):
160
+ match = re.fullmatch(r'ToRGB_lod(\d+)/(.*)', name)
161
+ if match:
162
+ r = kwargs.img_resolution // (2 ** int(match.group(1)))
163
+ tf_params[f'{r}x{r}/ToRGB/{match.group(2)}'] = value
164
+ kwargs.synthesis.kwargs.architecture = 'orig'
165
+ #for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}')
166
+
167
+ # Convert params.
168
+ G = network_class(**kwargs).eval().requires_grad_(False)
169
+ # pylint: disable=unnecessary-lambda
170
+ # pylint: disable=f-string-without-interpolation
171
+ _populate_module_params(G,
172
+ r'mapping\.w_avg', lambda: tf_params[f'dlatent_avg'],
173
+ r'mapping\.embed\.weight', lambda: tf_params[f'mapping/LabelEmbed/weight'].transpose(),
174
+ r'mapping\.embed\.bias', lambda: tf_params[f'mapping/LabelEmbed/bias'],
175
+ r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'mapping/Dense{i}/weight'].transpose(),
176
+ r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'mapping/Dense{i}/bias'],
177
+ r'synthesis\.b4\.const', lambda: tf_params[f'synthesis/4x4/Const/const'][0],
178
+ r'synthesis\.b4\.conv1\.weight', lambda: tf_params[f'synthesis/4x4/Conv/weight'].transpose(3, 2, 0, 1),
179
+ r'synthesis\.b4\.conv1\.bias', lambda: tf_params[f'synthesis/4x4/Conv/bias'],
180
+ r'synthesis\.b4\.conv1\.noise_const', lambda: tf_params[f'synthesis/noise0'][0, 0],
181
+ r'synthesis\.b4\.conv1\.noise_strength', lambda: tf_params[f'synthesis/4x4/Conv/noise_strength'],
182
+ r'synthesis\.b4\.conv1\.affine\.weight', lambda: tf_params[f'synthesis/4x4/Conv/mod_weight'].transpose(),
183
+ r'synthesis\.b4\.conv1\.affine\.bias', lambda: tf_params[f'synthesis/4x4/Conv/mod_bias'] + 1,
184
+ r'synthesis\.b(\d+)\.conv0\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/weight'][::-1, ::-1].transpose(3, 2, 0, 1),
185
+ r'synthesis\.b(\d+)\.conv0\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/bias'],
186
+ r'synthesis\.b(\d+)\.conv0\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-5}'][0, 0],
187
+ r'synthesis\.b(\d+)\.conv0\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/noise_strength'],
188
+ r'synthesis\.b(\d+)\.conv0\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_weight'].transpose(),
189
+ r'synthesis\.b(\d+)\.conv0\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_bias'] + 1,
190
+ r'synthesis\.b(\d+)\.conv1\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/weight'].transpose(3, 2, 0, 1),
191
+ r'synthesis\.b(\d+)\.conv1\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/bias'],
192
+ r'synthesis\.b(\d+)\.conv1\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-4}'][0, 0],
193
+ r'synthesis\.b(\d+)\.conv1\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/noise_strength'],
194
+ r'synthesis\.b(\d+)\.conv1\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_weight'].transpose(),
195
+ r'synthesis\.b(\d+)\.conv1\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_bias'] + 1,
196
+ r'synthesis\.b(\d+)\.torgb\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/weight'].transpose(3, 2, 0, 1),
197
+ r'synthesis\.b(\d+)\.torgb\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/bias'],
198
+ r'synthesis\.b(\d+)\.torgb\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_weight'].transpose(),
199
+ r'synthesis\.b(\d+)\.torgb\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_bias'] + 1,
200
+ r'synthesis\.b(\d+)\.skip\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Skip/weight'][::-1, ::-1].transpose(3, 2, 0, 1),
201
+ r'.*\.resample_filter', None,
202
+ r'.*\.act_filter', None,
203
+ )
204
+ return G
205
+
206
+ #----------------------------------------------------------------------------
207
+
208
+ def convert_tf_discriminator(tf_D):
209
+ if tf_D.version < 4:
210
+ raise ValueError('TensorFlow pickle version too low')
211
+
212
+ # Collect kwargs.
213
+ tf_kwargs = tf_D.static_kwargs
214
+ known_kwargs = set()
215
+ def kwarg(tf_name, default=None):
216
+ known_kwargs.add(tf_name)
217
+ return tf_kwargs.get(tf_name, default)
218
+
219
+ # Convert kwargs.
220
+ kwargs = dnnlib.EasyDict(
221
+ c_dim = kwarg('label_size', 0),
222
+ img_resolution = kwarg('resolution', 1024),
223
+ img_channels = kwarg('num_channels', 3),
224
+ architecture = kwarg('architecture', 'resnet'),
225
+ channel_base = kwarg('fmap_base', 16384) * 2,
226
+ channel_max = kwarg('fmap_max', 512),
227
+ num_fp16_res = kwarg('num_fp16_res', 0),
228
+ conv_clamp = kwarg('conv_clamp', None),
229
+ cmap_dim = kwarg('mapping_fmaps', None),
230
+ block_kwargs = dnnlib.EasyDict(
231
+ activation = kwarg('nonlinearity', 'lrelu'),
232
+ resample_filter = kwarg('resample_kernel', [1,3,3,1]),
233
+ freeze_layers = kwarg('freeze_layers', 0),
234
+ ),
235
+ mapping_kwargs = dnnlib.EasyDict(
236
+ num_layers = kwarg('mapping_layers', 0),
237
+ embed_features = kwarg('mapping_fmaps', None),
238
+ layer_features = kwarg('mapping_fmaps', None),
239
+ activation = kwarg('nonlinearity', 'lrelu'),
240
+ lr_multiplier = kwarg('mapping_lrmul', 0.1),
241
+ ),
242
+ epilogue_kwargs = dnnlib.EasyDict(
243
+ mbstd_group_size = kwarg('mbstd_group_size', None),
244
+ mbstd_num_channels = kwarg('mbstd_num_features', 1),
245
+ activation = kwarg('nonlinearity', 'lrelu'),
246
+ ),
247
+ )
248
+
249
+ # Check for unknown kwargs.
250
+ kwarg('structure')
251
+ kwarg('conditioning')
252
+ unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
253
+ if len(unknown_kwargs) > 0:
254
+ raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0])
255
+
256
+ # Collect params.
257
+ tf_params = _collect_tf_params(tf_D)
258
+ for name, value in list(tf_params.items()):
259
+ match = re.fullmatch(r'FromRGB_lod(\d+)/(.*)', name)
260
+ if match:
261
+ r = kwargs.img_resolution // (2 ** int(match.group(1)))
262
+ tf_params[f'{r}x{r}/FromRGB/{match.group(2)}'] = value
263
+ kwargs.architecture = 'orig'
264
+ #for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}')
265
+
266
+ # Convert params.
267
+ from training import networks_stylegan2
268
+ D = networks_stylegan2.Discriminator(**kwargs).eval().requires_grad_(False)
269
+ # pylint: disable=unnecessary-lambda
270
+ # pylint: disable=f-string-without-interpolation
271
+ _populate_module_params(D,
272
+ r'b(\d+)\.fromrgb\.weight', lambda r: tf_params[f'{r}x{r}/FromRGB/weight'].transpose(3, 2, 0, 1),
273
+ r'b(\d+)\.fromrgb\.bias', lambda r: tf_params[f'{r}x{r}/FromRGB/bias'],
274
+ r'b(\d+)\.conv(\d+)\.weight', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/weight'].transpose(3, 2, 0, 1),
275
+ r'b(\d+)\.conv(\d+)\.bias', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/bias'],
276
+ r'b(\d+)\.skip\.weight', lambda r: tf_params[f'{r}x{r}/Skip/weight'].transpose(3, 2, 0, 1),
277
+ r'mapping\.embed\.weight', lambda: tf_params[f'LabelEmbed/weight'].transpose(),
278
+ r'mapping\.embed\.bias', lambda: tf_params[f'LabelEmbed/bias'],
279
+ r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'Mapping{i}/weight'].transpose(),
280
+ r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'Mapping{i}/bias'],
281
+ r'b4\.conv\.weight', lambda: tf_params[f'4x4/Conv/weight'].transpose(3, 2, 0, 1),
282
+ r'b4\.conv\.bias', lambda: tf_params[f'4x4/Conv/bias'],
283
+ r'b4\.fc\.weight', lambda: tf_params[f'4x4/Dense0/weight'].transpose(),
284
+ r'b4\.fc\.bias', lambda: tf_params[f'4x4/Dense0/bias'],
285
+ r'b4\.out\.weight', lambda: tf_params[f'Output/weight'].transpose(),
286
+ r'b4\.out\.bias', lambda: tf_params[f'Output/bias'],
287
+ r'.*\.resample_filter', None,
288
+ )
289
+ return D
290
+
291
+ #----------------------------------------------------------------------------
292
+
293
+ @click.command()
294
+ @click.option('--source', help='Input pickle', required=True, metavar='PATH')
295
+ @click.option('--dest', help='Output pickle', required=True, metavar='PATH')
296
+ @click.option('--force-fp16', help='Force the networks to use FP16', type=bool, default=False, metavar='BOOL', show_default=True)
297
+ def convert_network_pickle(source, dest, force_fp16):
298
+ """Convert legacy network pickle into the native PyTorch format.
299
+
300
+ The tool is able to load the main network configurations exported using the TensorFlow version of StyleGAN2 or StyleGAN2-ADA.
301
+ It does not support e.g. StyleGAN2-ADA comparison methods, StyleGAN2 configs A-D, or StyleGAN1 networks.
302
+
303
+ Example:
304
+
305
+ \b
306
+ python legacy.py \\
307
+ --source=https://nvlabs-fi-cdn.nvidia.com/stylegan2/networks/stylegan2-cat-config-f.pkl \\
308
+ --dest=stylegan2-cat-config-f.pkl
309
+ """
310
+ print(f'Loading "{source}"...')
311
+ with dnnlib.util.open_url(source) as f:
312
+ data = load_network_pkl(f, force_fp16=force_fp16)
313
+ print(f'Saving "{dest}"...')
314
+ with open(dest, 'wb') as f:
315
+ pickle.dump(data, f)
316
+ print('Done.')
317
+
318
+ #----------------------------------------------------------------------------
319
+
320
+ if __name__ == "__main__":
321
+ convert_network_pickle() # pylint: disable=no-value-for-parameter
322
+
323
+ #----------------------------------------------------------------------------
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ torchvision
3
+ Ninja
4
+ gradio
5
+ huggingface_hub
6
+ hf_transfer
7
+ pyopengl
8
+ imgui
9
+ glfw
scripts/download_model.bat ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ @echo off
2
+ mkdir checkpoints
3
+ cd checkpoints
4
+
5
+ powershell -Command "(New-Object System.Net.WebClient).DownloadFile('https://storage.googleapis.com/self-distilled-stylegan/lions_512_pytorch.pkl', 'lions_512_pytorch.pkl')"
6
+ ren lions_512_pytorch.pkl stylegan2_lions_512_pytorch.pkl
7
+
8
+ powershell -Command "(New-Object System.Net.WebClient).DownloadFile('https://storage.googleapis.com/self-distilled-stylegan/dogs_1024_pytorch.pkl', 'dogs_1024_pytorch.pkl')"
9
+ ren dogs_1024_pytorch.pkl stylegan2_dogs_1024_pytorch.pkl
10
+
11
+ powershell -Command "(New-Object System.Net.WebClient).DownloadFile('https://storage.googleapis.com/self-distilled-stylegan/horses_256_pytorch.pkl', 'horses_256_pytorch.pkl')"
12
+ ren horses_256_pytorch.pkl stylegan2_horses_256_pytorch.pkl
13
+
14
+ powershell -Command "(New-Object System.Net.WebClient).DownloadFile('https://storage.googleapis.com/self-distilled-stylegan/elephants_512_pytorch.pkl', 'elephants_512_pytorch.pkl')"
15
+ ren elephants_512_pytorch.pkl stylegan2_elephants_512_pytorch.pkl
16
+
17
+ powershell -Command "(New-Object System.Net.WebClient).DownloadFile('https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhq-512x512.pkl', 'stylegan2-ffhq-512x512.pkl')"
18
+ powershell -Command "(New-Object System.Net.WebClient).DownloadFile('https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-afhqcat-512x512.pkl', 'stylegan2-afhqcat-512x512.pkl')"
19
+ powershell -Command "(New-Object System.Net.WebClient).DownloadFile('http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/stylegan2-car-config-f.pkl', 'stylegan2-car-config-f.pkl')"
20
+ powershell -Command "(New-Object System.Net.WebClient).DownloadFile('http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/stylegan2-cat-config-f.pkl', 'stylegan2-cat-config-f.pkl')"
21
+
22
+ echo "Done"
23
+ pause
scripts/download_model.sh ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ mkdir checkpoints
2
+ cd checkpoints
3
+
4
+ wget https://storage.googleapis.com/self-distilled-stylegan/lions_512_pytorch.pkl
5
+ mv lions_512_pytorch.pkl stylegan2_lions_512_pytorch.pkl
6
+
7
+ wget https://storage.googleapis.com/self-distilled-stylegan/dogs_1024_pytorch.pkl
8
+ mv dogs_1024_pytorch.pkl stylegan2_dogs_1024_pytorch.pkl
9
+
10
+ wget https://storage.googleapis.com/self-distilled-stylegan/horses_256_pytorch.pkl
11
+ mv horses_256_pytorch.pkl stylegan2_horses_256_pytorch.pkl
12
+
13
+ wget https://storage.googleapis.com/self-distilled-stylegan/elephants_512_pytorch.pkl
14
+ mv elephants_512_pytorch.pkl stylegan2_elephants_512_pytorch.pkl
15
+
16
+ wget https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhq-512x512.pkl
17
+ wget https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-afhqcat-512x512.pkl
18
+ wget http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/stylegan2-car-config-f.pkl
19
+ wget http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/stylegan2-cat-config-f.pkl
scripts/gui.bat ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ @echo off
2
+ python visualizer_drag.py ^
3
+ checkpoints/stylegan2_lions_512_pytorch.pkl ^
4
+ checkpoints/stylegan2-ffhq-512x512.pkl ^
5
+ checkpoints/stylegan2-afhqcat-512x512.pkl ^
6
+ checkpoints/stylegan2-car-config-f.pkl ^
7
+ checkpoints/stylegan2_dogs_1024_pytorch.pkl ^
8
+ checkpoints/stylegan2_horses_256_pytorch.pkl ^
9
+ checkpoints/stylegan2-cat-config-f.pkl ^
10
+ checkpoints/stylegan2_elephants_512_pytorch.pkl ^
11
+ checkpoints/stylegan_human_v2_512.pkl ^
12
+ checkpoints/stylegan2-lhq-256x256.pkl
scripts/gui.sh ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python visualizer_drag.py \
2
+ checkpoints/stylegan2_lions_512_pytorch.pkl \
3
+ checkpoints/stylegan2-ffhq-512x512.pkl \
4
+ checkpoints/stylegan2-afhqcat-512x512.pkl \
5
+ checkpoints/stylegan2-car-config-f.pkl \
6
+ checkpoints/stylegan2_dogs_1024_pytorch.pkl \
7
+ checkpoints/stylegan2_horses_256_pytorch.pkl \
8
+ checkpoints/stylegan2-cat-config-f.pkl \
9
+ checkpoints/stylegan2_elephants_512_pytorch.pkl \
10
+ checkpoints/stylegan_human_v2_512.pkl \
11
+ checkpoints/stylegan2-lhq-256x256.pkl
stylegan_human/.gitignore ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ .DS_Store
2
+ __pycache__
3
+ *.pt
4
+ *.pth
5
+ *.pdparams
6
+ *.pdiparams
7
+ *.pdmodel
8
+ *.pkl
9
+ *.info
10
+ *.yaml
stylegan_human/PP_HumanSeg/deploy/infer.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+
4
+ # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ import codecs
19
+ import os
20
+ import time
21
+
22
+ import yaml
23
+ import numpy as np
24
+ import cv2
25
+ import paddle
26
+ import paddleseg.transforms as T
27
+ from paddle.inference import create_predictor, PrecisionType
28
+ from paddle.inference import Config as PredictConfig
29
+ from paddleseg.core.infer import reverse_transform
30
+ from paddleseg.cvlibs import manager
31
+ from paddleseg.utils import TimeAverager
32
+
33
+ from ..scripts.optic_flow_process import optic_flow_process
34
+
35
+
36
+ class DeployConfig:
37
+ def __init__(self, path):
38
+ with codecs.open(path, 'r', 'utf-8') as file:
39
+ self.dic = yaml.load(file, Loader=yaml.FullLoader)
40
+
41
+ self._transforms = self._load_transforms(self.dic['Deploy'][
42
+ 'transforms'])
43
+ self._dir = os.path.dirname(path)
44
+
45
+ @property
46
+ def transforms(self):
47
+ return self._transforms
48
+
49
+ @property
50
+ def model(self):
51
+ return os.path.join(self._dir, self.dic['Deploy']['model'])
52
+
53
+ @property
54
+ def params(self):
55
+ return os.path.join(self._dir, self.dic['Deploy']['params'])
56
+
57
+ def _load_transforms(self, t_list):
58
+ com = manager.TRANSFORMS
59
+ transforms = []
60
+ for t in t_list:
61
+ ctype = t.pop('type')
62
+ transforms.append(com[ctype](**t))
63
+
64
+ return transforms
65
+
66
+
67
+ class Predictor:
68
+ def __init__(self, args):
69
+ self.cfg = DeployConfig(args.cfg)
70
+ self.args = args
71
+ self.compose = T.Compose(self.cfg.transforms)
72
+ resize_h, resize_w = args.input_shape
73
+
74
+ self.disflow = cv2.DISOpticalFlow_create(
75
+ cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
76
+ self.prev_gray = np.zeros((resize_h, resize_w), np.uint8)
77
+ self.prev_cfd = np.zeros((resize_h, resize_w), np.float32)
78
+ self.is_init = True
79
+
80
+ pred_cfg = PredictConfig(self.cfg.model, self.cfg.params)
81
+ pred_cfg.disable_glog_info()
82
+ if self.args.use_gpu:
83
+ pred_cfg.enable_use_gpu(100, 0)
84
+
85
+ self.predictor = create_predictor(pred_cfg)
86
+ if self.args.test_speed:
87
+ self.cost_averager = TimeAverager()
88
+
89
+ def preprocess(self, img):
90
+ ori_shapes = []
91
+ processed_imgs = []
92
+ processed_img = self.compose(img)[0]
93
+ processed_imgs.append(processed_img)
94
+ ori_shapes.append(img.shape)
95
+ return processed_imgs, ori_shapes
96
+
97
+ def run(self, img, bg):
98
+ input_names = self.predictor.get_input_names()
99
+ input_handle = self.predictor.get_input_handle(input_names[0])
100
+ processed_imgs, ori_shapes = self.preprocess(img)
101
+ data = np.array(processed_imgs)
102
+ input_handle.reshape(data.shape)
103
+ input_handle.copy_from_cpu(data)
104
+ if self.args.test_speed:
105
+ start = time.time()
106
+
107
+ self.predictor.run()
108
+
109
+ if self.args.test_speed:
110
+ self.cost_averager.record(time.time() - start)
111
+ output_names = self.predictor.get_output_names()
112
+ output_handle = self.predictor.get_output_handle(output_names[0])
113
+ output = output_handle.copy_to_cpu()
114
+ return self.postprocess(output, img, ori_shapes[0], bg)
115
+
116
+
117
+ def postprocess(self, pred, img, ori_shape, bg):
118
+ if not os.path.exists(self.args.save_dir):
119
+ os.makedirs(self.args.save_dir)
120
+ resize_w = pred.shape[-1]
121
+ resize_h = pred.shape[-2]
122
+ if self.args.soft_predict:
123
+ if self.args.use_optic_flow:
124
+ score_map = pred[:, 1, :, :].squeeze(0)
125
+ score_map = 255 * score_map
126
+ cur_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
127
+ cur_gray = cv2.resize(cur_gray, (resize_w, resize_h))
128
+ optflow_map = optic_flow_process(cur_gray, score_map, self.prev_gray, self.prev_cfd, \
129
+ self.disflow, self.is_init)
130
+ self.prev_gray = cur_gray.copy()
131
+ self.prev_cfd = optflow_map.copy()
132
+ self.is_init = False
133
+
134
+ score_map = np.repeat(optflow_map[:, :, np.newaxis], 3, axis=2)
135
+ score_map = np.transpose(score_map, [2, 0, 1])[np.newaxis, ...]
136
+ score_map = reverse_transform(
137
+ paddle.to_tensor(score_map),
138
+ ori_shape,
139
+ self.cfg.transforms,
140
+ mode='bilinear')
141
+ alpha = np.transpose(score_map.numpy().squeeze(0),
142
+ [1, 2, 0]) / 255
143
+ else:
144
+ score_map = pred[:, 1, :, :]
145
+ score_map = score_map[np.newaxis, ...]
146
+ score_map = reverse_transform(
147
+ paddle.to_tensor(score_map),
148
+ ori_shape,
149
+ self.cfg.transforms,
150
+ mode='bilinear')
151
+ alpha = np.transpose(score_map.numpy().squeeze(0), [1, 2, 0])
152
+
153
+ else:
154
+ if pred.ndim == 3:
155
+ pred = pred[:, np.newaxis, ...]
156
+ result = reverse_transform(
157
+ paddle.to_tensor(
158
+ pred, dtype='float32'),
159
+ ori_shape,
160
+ self.cfg.transforms,
161
+ mode='bilinear')
162
+
163
+ result = np.array(result)
164
+ if self.args.add_argmax:
165
+ result = np.argmax(result, axis=1)
166
+ else:
167
+ result = result.squeeze(1)
168
+ alpha = np.transpose(result, [1, 2, 0])
169
+
170
+ # background replace
171
+ h, w, _ = img.shape
172
+ if bg is None:
173
+ bg = np.ones_like(img)*255
174
+ else:
175
+ bg = cv2.resize(bg, (w, h))
176
+ if bg.ndim == 2:
177
+ bg = bg[..., np.newaxis]
178
+
179
+ comb = (alpha * img + (1 - alpha) * bg).astype(np.uint8)
180
+ return comb, alpha, bg, img
stylegan_human/PP_HumanSeg/export_model/download_export_model.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf8
2
+ # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import sys
17
+ import os
18
+
19
+ LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
20
+ TEST_PATH = os.path.join(LOCAL_PATH, "../../../", "test")
21
+ sys.path.append(TEST_PATH)
22
+
23
+ from paddleseg.utils.download import download_file_and_uncompress
24
+
25
+ model_urls = {
26
+ "pphumanseg_lite_portrait_398x224_with_softmax":
27
+ "https://paddleseg.bj.bcebos.com/dygraph/ppseg/ppseg_lite_portrait_398x224_with_softmax.tar.gz",
28
+ "deeplabv3p_resnet50_os8_humanseg_512x512_100k_with_softmax":
29
+ "https://paddleseg.bj.bcebos.com/dygraph/humanseg/export/deeplabv3p_resnet50_os8_humanseg_512x512_100k_with_softmax.zip",
30
+ "fcn_hrnetw18_small_v1_humanseg_192x192_with_softmax":
31
+ "https://paddleseg.bj.bcebos.com/dygraph/humanseg/export/fcn_hrnetw18_small_v1_humanseg_192x192_with_softmax.zip",
32
+ "pphumanseg_lite_generic_humanseg_192x192_with_softmax":
33
+ "https://paddleseg.bj.bcebos.com/dygraph/humanseg/export/pphumanseg_lite_generic_192x192_with_softmax.zip",
34
+ }
35
+
36
+ if __name__ == "__main__":
37
+ for model_name, url in model_urls.items():
38
+ download_file_and_uncompress(
39
+ url=url,
40
+ savepath=LOCAL_PATH,
41
+ extrapath=LOCAL_PATH,
42
+ extraname=model_name)
43
+
44
+ print("Export model download success!")
stylegan_human/PP_HumanSeg/pretrained_model/download_pretrained_model.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf8
2
+ # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import sys
17
+ import os
18
+
19
+ LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
20
+ TEST_PATH = os.path.join(LOCAL_PATH, "../../../", "test")
21
+ sys.path.append(TEST_PATH)
22
+
23
+ from paddleseg.utils.download import download_file_and_uncompress
24
+
25
+ model_urls = {
26
+ "pphumanseg_lite_portrait_398x224":
27
+ "https://paddleseg.bj.bcebos.com/dygraph/ppseg/ppseg_lite_portrait_398x224.tar.gz",
28
+ "deeplabv3p_resnet50_os8_humanseg_512x512_100k":
29
+ "https://paddleseg.bj.bcebos.com/dygraph/humanseg/train/deeplabv3p_resnet50_os8_humanseg_512x512_100k.zip",
30
+ "fcn_hrnetw18_small_v1_humanseg_192x192":
31
+ "https://paddleseg.bj.bcebos.com/dygraph/humanseg/train/fcn_hrnetw18_small_v1_humanseg_192x192.zip",
32
+ "pphumanseg_lite_generic_human_192x192":
33
+ "https://paddleseg.bj.bcebos.com/dygraph/humanseg/train/pphumanseg_lite_generic_192x192.zip",
34
+ }
35
+
36
+ if __name__ == "__main__":
37
+ for model_name, url in model_urls.items():
38
+ download_file_and_uncompress(
39
+ url=url,
40
+ savepath=LOCAL_PATH,
41
+ extrapath=LOCAL_PATH,
42
+ extraname=model_name)
43
+
44
+ print("Pretrained model download success!")
stylegan_human/README.md ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # StyleGAN-Human: A Data-Centric Odyssey of Human Generation
2
+ <img src="./img/demo_V5_thumbnails-min.png" width="96%" height="96%">
3
+
4
+ <!--
5
+ **stylegan-human/StyleGAN-Human** is a ✨ _special_ ✨ repository because its `README.md` (this file) appears on your GitHub profile.
6
+
7
+ -->
8
+
9
+ >
10
+ >
11
+ > **Abstract:** *Unconditional human image generation is an important task in vision and graphics, which enables various applications in the creative industry. Existing studies in this field mainly focus on "network engineering" such as designing new components and objective functions. This work takes a data-centric perspective and investigates multiple critical aspects in "data engineering", which we believe would complement the current practice. To facilitate a comprehensive study, we collect and annotate a large-scale human image dataset with over 230K samples capturing diverse poses and textures. Equipped with this large dataset, we rigorously investigate three essential factors in data engineering for StyleGAN-based human generation, namely data size, data distribution, and data alignment. Extensive experiments reveal several valuable observations w.r.t. these aspects: 1) Large-scale data, more than 40K images, are needed to train a high-fidelity unconditional human generation model with vanilla StyleGAN. 2) A balanced training set helps improve the generation quality with rare face poses compared to the long-tailed counterpart, whereas simply balancing the clothing texture distribution does not effectively bring an improvement. 3) Human GAN models with body centers for alignment outperform models trained using face centers or pelvis points as alignment anchors. In addition, a model zoo and human editing applications are demonstrated to facilitate future research in the community.* <br>
12
+ **Keyword:** Human Image Generation, Data-Centric, StyleGAN
13
+
14
+ [Jianglin Fu](mailto:fujianglin@sensetime.com), [Shikai Li](mailto:lishikai@sensetime.com), [Yuming Jiang](https://yumingj.github.io/), [Kwan-Yee Lin](https://kwanyeelin.github.io/), [Chen Qian](https://scholar.google.com/citations?user=AerkT0YAAAAJ&hl=zh-CN), [Chen Change Loy](https://www.mmlab-ntu.com/person/ccloy/), [Wayne Wu](https://wywu.github.io/), and [Ziwei Liu](https://liuziwei7.github.io/) <br>
15
+ **[[Demo Video]](https://youtu.be/nIrb9hwsdcI)** | **[[Project Page]](https://stylegan-human.github.io/)** | **[[Paper]](https://arxiv.org/pdf/2204.11823.pdf)**
16
+
17
+ ## Updates
18
+ - [20/07/2022] [SHHQ-1.0](./docs/Dataset.md) dataset with 40K images is released! :sparkles:
19
+ - [15/06/2022] Data alignment and real-image inversion scripts are released.
20
+ - [26/04/2022] Technical report released!
21
+ - [22/04/2022] Technical report will be released before May.
22
+ - [21/04/2022] The codebase and project page are created.
23
+
24
+ ## Data Download
25
+ The first version SHHQ-1.0, with 40K images is released. To download and use the dataset set, please read the instructions in [Dataset.md](./docs/Dataset.md)
26
+
27
+ (We are currently facing large incoming applications, and we need to carefully verify all the applicants, please be patient, and we will reply to you as soon as possible.)
28
+
29
+ ## Model Zoo
30
+
31
+ | Structure | 1024x512 | Metric | Scores | 512x256 | Metric | Scores |
32
+ | --------- |:----------:| :----------:| :----------:| :-----: | :-----: | :-----: |
33
+ | StyleGAN1 |[stylegan_human_v1_1024.pkl](https://drive.google.com/file/d/1h-R-IV-INGdPEzj4P9ml6JTEvihuNgLX/view?usp=sharing)| fid50k | 3.79 | to be released | - | - |
34
+ | StyleGAN2 |[stylegan_human_v2_1024.pkl](https://drive.google.com/file/d/1FlAb1rYa0r_--Zj_ML8e6shmaF28hQb5/view?usp=sharing)| fid50k_full | 1.57 |[stylegan_human_v2_512.pkl](https://drive.google.com/file/d/1dlFEHbu-WzQWJl7nBBZYcTyo000H9hVm/view?usp=sharing) | fid50k_full | 1.97 |
35
+ | StyleGAN3 |to be released | - | - | [stylegan_human_v3_512.pkl](https://drive.google.com/file/d/1_274jk_N6WSCkKWeu7hjHycqGvbuOFf5/view?usp=sharing) | fid50k_full | 2.54 |
36
+
37
+
38
+
39
+ ## Web Demo
40
+
41
+ Integrated into [Huggingface Spaces 🤗](https://huggingface.co/spaces) using [Gradio](https://github.com/gradio-app/gradio). Try out the Web Demo for generation: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/hysts/StyleGAN-Human) and interpolation [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/hysts/StyleGAN-Human-Interpolation)
42
+
43
+
44
+
45
+ <a href="https://colab.research.google.com/drive/1sgxoDM55iM07FS54vz9ALg1XckiYA2On"><img src="https://colab.research.google.com/assets/colab-badge.svg" height=22.5></a>
46
+
47
+ We prepare a Colab demo to allow you to synthesize images with the provided models, as well as visualize the performance of style-mixing, interpolation, and attributes editing.
48
+ The notebook will guide you to install the necessary environment and download pretrained models. The output images can be found in `./StyleGAN-Human/outputs/`.
49
+ Hope you enjoy!
50
+
51
+ ## Usage
52
+
53
+ ### System requirements
54
+ * The original code bases are [stylegan (tensorflow)](https://github.com/NVlabs/stylegan), [stylegan2-ada (pytorch)](https://github.com/NVlabs/stylegan2-ada-pytorch), [stylegan3 (pytorch)](https://github.com/NVlabs/stylegan3), released by NVidia
55
+
56
+ * We tested in Python 3.8.5 and PyTorch 1.9.1 with CUDA 11.1. (See https://pytorch.org for PyTorch install instructions.)
57
+
58
+ ### Installation
59
+ To work with this project on your own machine, you need to install the environmnet as follows:
60
+
61
+ ```
62
+ conda env create -f environment.yml
63
+ conda activate stylehuman
64
+ # [Optional: tensorflow 1.x is required for StyleGAN1. ]
65
+ pip install nvidia-pyindex
66
+ pip install nvidia-tensorflow[horovod]
67
+ pip install nvidia-tensorboard==1.15
68
+ ```
69
+ Extra notes:
70
+ 1. In case having some conflicts when calling CUDA version, please try to empty the LD_LIBRARY_PATH. For example:
71
+ ```
72
+ LD_LIBRARY_PATH=; python generate.py --outdir=out/stylegan_human_v2_1024 --trunc=1 --seeds=1,3,5,7
73
+ --network=pretrained_models/stylegan_human_v2_1024.pkl --version 2
74
+ ```
75
+
76
+
77
+ 2. We found the following troubleshooting links might be helpful: [1.](https://github.com/NVlabs/stylegan3), [2.](https://github.com/NVlabs/stylegan3/blob/main/docs/troubleshooting.md)
78
+
79
+ ### Train
80
+ The training scripts are based on the original [stylegan1](https://github.com/NVlabs/stylegan), [stylegan2-ada](https://github.com/NVlabs/stylegan2-ada-pytorch), and [stylegan3](https://github.com/NVlabs/stylegan3) with minor changes. Here we only provide the scripts with modifications for SG2 and SG3. You can replace the old files with the provided scripts to train. (assume SHHQ-1.0 is placed under data/)
81
+
82
+ #### Train Stylegan2-ada-pytorch with SHHQ-1.0
83
+ ```
84
+ python train.py --outdir=training_results/sg2/ --data=data/SHHQ-1.0/ \
85
+ --gpus=8 --aug=noaug --mirror=1 --snap=250 --cfg=shhq --square=False
86
+ ```
87
+ #### Train Stylegan3 with SHHQ-1.0
88
+ ```
89
+ python train.py --outdir=training_results/sg3/ --cfg=stylegan3-r --gpus=8 --batch=32 --gamma=12.4 \
90
+ --mirror=1 --aug=noaug --data=data/SHHQ-1.0/ --square=False --snap=250
91
+ ```
92
+
93
+ ### Pretrained models
94
+ Please put the downloaded pretrained models [from above link](#Model-Zoo) under the folder 'pretrained_models'.
95
+
96
+
97
+ ### Generate full-body human images using our pretrained model
98
+ ```
99
+ # Generate human full-body images without truncation
100
+ python generate.py --outdir=outputs/generate/stylegan_human_v2_1024 --trunc=1 --seeds=1,3,5,7 --network=pretrained_models/stylegan_human_v2_1024.pkl --version 2
101
+
102
+ # Generate human full-body images with truncation
103
+ python generate.py --outdir=outputs/generate/stylegan_human_v2_1024 --trunc=0.8 --seeds=0-10 --network=pretrained_models/stylegan_human_v2_1024.pkl --version 2
104
+
105
+ # Generate human full-body images using stylegan V1
106
+ python generate.py --outdir=outputs/generate/stylegan_human_v1_1024 --network=pretrained_models/stylegan_human_v1_1024.pkl --version 1 --seeds=1,3,5
107
+
108
+ # Generate human full-body images using stylegan V3
109
+ python generate.py --outdir=outputs/generate/stylegan_human_v3_512 --network=pretrained_models/stylegan_human_v3_512.pkl --version 3 --seeds=1,3,5
110
+ ```
111
+
112
+
113
+ #### Note: The following demos are generated based on models related to StyleGAN V2 (stylegan_human_v2_512.pkl and stylegan_human_v2_1024.pkl). If you want to see results for V1 or V3, you need to change the loading method of the corresponding models.
114
+
115
+
116
+ ### Interpolation
117
+ ```
118
+ python interpolation.py --network=pretrained_models/stylegan_human_v2_1024.pkl --seeds=85,100 --outdir=outputs/inter_gifs
119
+ ```
120
+
121
+ ### Style-mixing **image** using stylegan2
122
+ ```
123
+ python style_mixing.py --network=pretrained_models/stylegan_human_v2_1024.pkl --rows=85,100,75,458,1500 \\
124
+ --cols=55,821,1789,293 --styles=0-3 --outdir=outputs/stylemixing
125
+ ```
126
+
127
+ ### Style-mixing **video** using stylegan2
128
+ ```
129
+ python stylemixing_video.py --network=pretrained_models/stylegan_human_v2_1024.pkl --row-seed=3859 \\
130
+ --col-seeds=3098,31759,3791 --col-styles=8-12 --trunc=0.8 --outdir=outputs/stylemixing_video
131
+ ```
132
+
133
+ ### Aligned raw images
134
+ For alignment, we use [openpose-pytorch](https://github.com/Hzzone/pytorch-openpose) for body-keypoints detection and [PaddlePaddle](https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.5/contrib/PP-HumanSeg) for human segmentation.
135
+ Before running the alignment script, few models need to be installed:
136
+ 1. download [body_pose_model.pth](https://drive.google.com/drive/folders/1JsvI4M4ZTg98fmnCZLFM-3TeovnCRElG?usp=sharing) and place it into openpose/model/.
137
+ 2. download and extract [deeplabv3p_resnet50_os8_humanseg_512x512_100k_with_softmax](https://paddleseg.bj.bcebos.com/dygraph/humanseg/export/deeplabv3p_resnet50_os8_humanseg_512x512_100k_with_softmax.zip) into PP_HumanSeg/export_model/deeplabv3p_resnet50_os8_humanseg_512x512_100k_with_softmax.
138
+ 3. download and extract [deeplabv3p_resnet50_os8_humanseg_512x512_100k](https://paddleseg.bj.bcebos.com/dygraph/humanseg/train/deeplabv3p_resnet50_os8_humanseg_512x512_100k.zip) into PP_HumanSeg/pretrained_model/deeplabv3p_resnet50_os8_humanseg_512x512_100k.
139
+ 4. install paddlepaddel: ``` pip install paddleseg ```
140
+
141
+ Then you can start alignment:
142
+ ```
143
+ python alignment.py --image-folder img/test/ --output-folder aligned_image/
144
+ ```
145
+
146
+ ### Invert real image with [PTI](https://github.com/danielroich/PTI)
147
+ Before inversion, please download our PTI weights: [e4e_w+.pt](https://drive.google.com/file/d/1NUfSJqLhsrU7c9PwAtlZ9xtrxhzS_6tu/view?usp=sharing) into /pti/.
148
+
149
+ Few parameters you can change:
150
+ - /pti/pti_configs/hyperparameters.py:
151
+ - first_inv_type = 'w+' -> Use pretrained e4e encoder
152
+ - first_inv_type = 'w' -> Use projection and optimization
153
+ - /pti/pti_configs/paths_config.py:
154
+ - input_data_path: path of real images
155
+ - e4e: path of e4e_w+.pt
156
+ - stylegan2_ada_shhq: pretrained stylegan2-ada model for SHHQ
157
+
158
+ ```
159
+ python run_pti.py
160
+ ```
161
+ Note: we used the test image under 'aligned_image/' (the output of alignment.py), the inverted latent code and fine-tuned generator will be saved in 'outputs/pti/'
162
+
163
+
164
+ ### Editing with InterfaceGAN, StyleSpace, and Sefa
165
+ ```
166
+ python edit.py --network pretrained_models/stylegan_human_v2_1024.pkl --attr_name upper_length \\
167
+ --seeds 61531,61570,61571,61610 --outdir outputs/edit_results
168
+ ```
169
+
170
+ ### Editing using inverted latent code
171
+ ```
172
+ python edit.py ---network outputs/pti/checkpoints/model_test.pkl --attr_name upper_length \\
173
+ --outdir outputs/edit_results --real True --real_w_path outputs/pti/embeddings/test/PTI/test/0.pt --real_img_path aligned_image/test.png
174
+ ```
175
+
176
+ Note:
177
+ 1. ''upper_length'' and ''bottom_length'' of ''attr_name'' are available for demo.
178
+ 2. Layers to control and editing strength are set in edit/edit_config.py.
179
+
180
+
181
+ ### Demo for [InsetGAN](https://arxiv.org/abs/2203.07293)
182
+
183
+ We implement a quick demo using the key idea from InsetGAN: combining the face generated by FFHQ with the human-body generated by our pretrained model, optimizing both face and body latent codes to get a coherent full-body image.
184
+ Before running the script, you need to download the [FFHQ face model]( https://docs.google.com/uc?export=download&confirm=t&id=125OG7SMkXI-Kf2aqiwLLHyCvSW-gZk3M), or you can use your own face model, as well as [pretrained face landmark](https://docs.google.com/uc?export=download&confirm=&id=1A82DnJBJzt8wI2J8ZrCK5fgHcQ2-tcWM) and [pretrained CNN face detection model for dlib](https://docs.google.com/uc?export=download&confirm=&id=1MduBgju5KFNrQfDLoQXJ_1_h5MnctCIG)
185
+ ```
186
+ python insetgan.py --body_network=pretrained_models/stylegan_human_v2_1024.pkl --face_network=pretrained_models/ffhq.pkl \\
187
+ --body_seed=82 --face_seed=43 --trunc=0.6 --outdir=outputs/insetgan/ --video 1
188
+ ```
189
+
190
+ ## Results
191
+
192
+ ### Editing with inverted real image
193
+ (from left to right: real image | inverted image | InterFaceGAN result | StyleSpace result | SeFa result)
194
+
195
+ https://user-images.githubusercontent.com/98547009/173773800-bb7fe54a-84d3-4b30-9864-a6b7b311f8ff.mp4
196
+
197
+
198
+ ### For more demo, please visit our [**web page**](https://stylegan-human.github.io/) .
199
+
200
+
201
+ ## TODO List
202
+
203
+ - [ ] Release 1024x512 version of StyleGAN-Human based on StyleGAN3
204
+ - [ ] Release 512x256 version of StyleGAN-Human based on StyleGAN1
205
+ - [ ] Extension of downstream application (InsetGAN): Add face inversion interface to support fusing user face image and stylegen-human body image
206
+ - [x] Add Inversion Script into the provided editing pipeline
207
+ - [ ] Release Dataset
208
+
209
+
210
+ ## Related Works
211
+ * (SIGGRAPH 2022) **Text2Human: Text-Driven Controllable Human Image Generation**, Yuming Jiang et al. [[Paper](https://arxiv.org/pdf/2205.15996.pdf)], [[Code](https://github.com/yumingj/Text2Human)], [[Project Page](https://yumingj.github.io/projects/Text2Human.html)], [[Dataset](https://github.com/yumingj/DeepFashion-MultiModal)]
212
+ * (ICCV 2021) **Talk-to-Edit: Fine-Grained Facial Editing via Dialog**, Yuming Jiang et al. [[Paper](https://arxiv.org/abs/2109.04425)], [[Code](https://github.com/yumingj/Talk-to-Edit)], [[Project Page](https://www.mmlab-ntu.com/project/talkedit/)], [[Dataset](https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebA_Dialog.html)]
213
+ * (Technical Report 2022) **Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis**, Wei Cheng et al. [[Paper](https://arxiv.org/pdf/2204.11798.pdf)], [[Code](https://github.com/generalizable-neural-performer/gnr)], [[Project Page](https://generalizable-neural-performer.github.io/)], [[Dataset](https://generalizable-neural-performer.github.io/genebody.html)]
214
+
215
+ ## Citation
216
+
217
+ If you find this work useful for your research, please consider citing our paper:
218
+
219
+ ```bibtex
220
+ @article{fu2022styleganhuman,
221
+ title={StyleGAN-Human: A Data-Centric Odyssey of Human Generation},
222
+ author={Fu, Jianglin and Li, Shikai and Jiang, Yuming and Lin, Kwan-Yee and Qian, Chen and Loy, Chen-Change and Wu, Wayne and Liu, Ziwei},
223
+ journal = {arXiv preprint},
224
+ volume = {arXiv:2204.11823},
225
+ year = {2022}
226
+ ```
227
+
228
+ ## Acknowlegement
229
+ Part of the code is borrowed from [stylegan (tensorflow)](https://github.com/NVlabs/stylegan), [stylegan2-ada (pytorch)](https://github.com/NVlabs/stylegan2-ada-pytorch), [stylegan3 (pytorch)](https://github.com/NVlabs/stylegan3).
stylegan_human/__init__.py ADDED
File without changes
stylegan_human/alignment.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+
4
+ import os
5
+ import argparse
6
+ import numpy as np
7
+ import torch
8
+ from torch.utils.data import DataLoader
9
+ from torchvision.transforms import transforms
10
+ from utils.ImagesDataset import ImagesDataset
11
+
12
+ import cv2
13
+ import time
14
+ import copy
15
+ import imutils
16
+
17
+ # for openpose body keypoint detector : # (src:https://github.com/Hzzone/pytorch-openpose)
18
+ from openpose.src import util
19
+ from openpose.src.body import Body
20
+
21
+ # for paddlepaddle human segmentation : #(src: https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.5/contrib/PP-HumanSeg/)
22
+ from PP_HumanSeg.deploy.infer import Predictor as PP_HumenSeg_Predictor
23
+
24
+ import math
25
+ def angle_between_points(p0,p1,p2):
26
+ if p0[1]==-1 or p1[1]==-1 or p2[1]==-1:
27
+ return -1
28
+ a = (p1[0]-p0[0])**2 + (p1[1]-p0[1])**2
29
+ b = (p1[0]-p2[0])**2 + (p1[1]-p2[1])**2
30
+ c = (p2[0]-p0[0])**2 + (p2[1]-p0[1])**2
31
+ if a * b == 0:
32
+ return -1
33
+ return math.acos((a+b-c) / math.sqrt(4*a*b)) * 180 / math.pi
34
+
35
+
36
+ def crop_img_with_padding(img, keypoints, rect):
37
+ person_xmin,person_xmax, ymin, ymax= rect
38
+ img_h,img_w,_ = img.shape ## find body center using keypoints
39
+ middle_shoulder_x = keypoints[1][0]
40
+ middle_hip_x = (keypoints[8][0] + keypoints[11][0]) // 2
41
+ mid_x = (middle_hip_x + middle_shoulder_x) // 2
42
+ mid_y = (ymin + ymax) // 2
43
+ ## find which side (l or r) is further than center x, use the further side
44
+ if abs(mid_x-person_xmin) > abs(person_xmax-mid_x): #left further
45
+ xmin = person_xmin
46
+ xmax = mid_x + (mid_x-person_xmin)
47
+ else:
48
+ ############### may be negtive
49
+ ### in this case, the script won't output any image, leave the case like this
50
+ ### since we don't want to pad human body
51
+ xmin = mid_x - (person_xmax-mid_x)
52
+ xmax = person_xmax
53
+
54
+ w = xmax - xmin
55
+ h = ymax - ymin
56
+ ## pad rectangle to w:h = 1:2 ## calculate desired border length
57
+ if h / w >= 2: #pad horizontally
58
+ target_w = h // 2
59
+ xmin_prime = int(mid_x - target_w / 2)
60
+ xmax_prime = int(mid_x + target_w / 2)
61
+ if xmin_prime < 0:
62
+ pad_left = abs(xmin_prime)# - xmin
63
+ xmin = 0
64
+ else:
65
+ pad_left = 0
66
+ xmin = xmin_prime
67
+ if xmax_prime > img_w:
68
+ pad_right = xmax_prime - img_w
69
+ xmax = img_w
70
+ else:
71
+ pad_right = 0
72
+ xmax = xmax_prime
73
+
74
+ cropped_img = img[int(ymin):int(ymax), int(xmin):int(xmax)]
75
+ im_pad = cv2.copyMakeBorder(cropped_img, 0, 0, int(pad_left), int(pad_right), cv2.BORDER_REPLICATE)
76
+ else: #pad vertically
77
+ target_h = w * 2
78
+ ymin_prime = mid_y - (target_h / 2)
79
+ ymax_prime = mid_y + (target_h / 2)
80
+ if ymin_prime < 0:
81
+ pad_up = abs(ymin_prime)# - ymin
82
+ ymin = 0
83
+ else:
84
+ pad_up = 0
85
+ ymin = ymin_prime
86
+ if ymax_prime > img_h:
87
+ pad_down = ymax_prime - img_h
88
+ ymax = img_h
89
+ else:
90
+ pad_down = 0
91
+ ymax = ymax_prime
92
+ print(ymin,ymax, xmin,xmax, img.shape)
93
+
94
+ cropped_img = img[int(ymin):int(ymax), int(xmin):int(xmax)]
95
+ im_pad = cv2.copyMakeBorder(cropped_img, int(pad_up), int(pad_down), 0,
96
+ 0, cv2.BORDER_REPLICATE)
97
+ result = cv2.resize(im_pad,(512,1024),interpolation = cv2.INTER_AREA)
98
+ return result
99
+
100
+
101
+ def run(args):
102
+ os.makedirs(args.output_folder, exist_ok=True)
103
+ dataset = ImagesDataset(args.image_folder, transforms.Compose([transforms.ToTensor()]))
104
+ dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
105
+
106
+ body_estimation = Body('openpose/model/body_pose_model.pth')
107
+
108
+ total = len(dataloader)
109
+ print('Num of dataloader : ', total)
110
+ os.makedirs(f'{args.output_folder}', exist_ok=True)
111
+ # os.makedirs(f'{args.output_folder}/middle_result', exist_ok=True)
112
+
113
+ ## initialzide HumenSeg
114
+ human_seg_args = {}
115
+ human_seg_args['cfg'] = 'PP_HumanSeg/export_model/deeplabv3p_resnet50_os8_humanseg_512x512_100k_with_softmax/deploy.yaml'
116
+ human_seg_args['input_shape'] = [1024,512]
117
+ human_seg_args['save_dir'] = args.output_folder
118
+ human_seg_args['soft_predict'] = False
119
+ human_seg_args['use_gpu'] = True
120
+ human_seg_args['test_speed'] = False
121
+ human_seg_args['use_optic_flow'] = False
122
+ human_seg_args['add_argmax'] = True
123
+ human_seg_args= argparse.Namespace(**human_seg_args)
124
+ human_seg = PP_HumenSeg_Predictor(human_seg_args)
125
+
126
+ from tqdm import tqdm
127
+ for fname, image in tqdm(dataloader):
128
+ # try:
129
+ ## tensor to numpy image
130
+ fname = fname[0]
131
+ print(f'Processing \'{fname}\'.')
132
+
133
+ image = (image.permute(0, 2, 3, 1) * 255).clamp(0, 255)
134
+ image = image.squeeze(0).numpy() # --> tensor to numpy, (H,W,C)
135
+ # avoid super high res img
136
+ if image.shape[0] >= 2000: # height ### for shein image
137
+ ratio = image.shape[0]/1200 #height
138
+ dim = (int(image.shape[1]/ratio),1200)#(width, height)
139
+ image = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
140
+ image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
141
+
142
+ ## create segmentation
143
+ # mybg = cv2.imread('mybg.png')
144
+ comb, segmentation, bg, ori_img = human_seg.run(image,None) #mybg)
145
+ # cv2.imwrite('comb.png',comb) # [0,255]
146
+ # cv2.imwrite('alpha.png',segmentation*255) # segmentation [0,1] --> [0.255]
147
+ # cv2.imwrite('bg.png',bg) #[0,255]
148
+ # cv2.imwrite('ori_img.png',ori_img) # [0,255]
149
+
150
+ masks_np = (segmentation* 255)# .byte().cpu().numpy() #1024,512,1
151
+ mask0_np = masks_np[:,:,0].astype(np.uint8)#[0, :, :]
152
+ contours = cv2.findContours(mask0_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
153
+ cnts = imutils.grab_contours(contours)
154
+ c = max(cnts, key=cv2.contourArea)
155
+ extTop = tuple(c[c[:, :, 1].argmin()][0])
156
+ extBot = tuple(c[c[:, :, 1].argmax()][0])
157
+ extBot = list(extBot)
158
+ extTop = list(extTop)
159
+ pad_range = int((extBot[1]-extTop[1])*0.05)
160
+ if (int(extTop[1])<=5 and int(extTop[1])>0) and (comb.shape[0]>int(extBot[1]) and int(extBot[1])>=comb.shape[0]-5): #seg mask already reaches to the edge
161
+ #pad with pure white, top 100 px, bottom 100 px
162
+ comb= cv2.copyMakeBorder(comb,pad_range+5,pad_range+5,0,0,cv2.BORDER_CONSTANT,value=[255,255,255])
163
+ elif int(extTop[1])<=0 or int(extBot[1])>=comb.shape[0]:
164
+ print('PAD: body out of boundary', fname) #should not happened
165
+ return {}
166
+ else:
167
+ comb = cv2.copyMakeBorder(comb, pad_range+5, pad_range+5, 0, 0, cv2.BORDER_REPLICATE) #105 instead of 100: give some extra space
168
+ extBot[1] = extBot[1] + pad_range+5
169
+ extTop[1] = extTop[1] + pad_range+5
170
+
171
+ extLeft = tuple(c[c[:, :, 0].argmin()][0])
172
+ extRight = tuple(c[c[:, :, 0].argmax()][0])
173
+ extLeft = list(extLeft)
174
+ extRight = list(extRight)
175
+ person_ymin = int(extTop[1])-pad_range # 100
176
+ person_ymax = int(extBot[1])+pad_range # 100 #height
177
+ if person_ymin<0 or person_ymax>comb.shape[0]: # out of range
178
+ return {}
179
+ person_xmin = int(extLeft[0])
180
+ person_xmax = int(extRight[0])
181
+ rect = [person_xmin,person_xmax,person_ymin, person_ymax]
182
+ # recimg = copy.deepcopy(comb)
183
+ # cv2.rectangle(recimg,(person_xmin,person_ymin),(person_xmax,person_ymax),(0,255,0),2)
184
+ # cv2.imwrite(f'{args.output_folder}/middle_result/{fname}_rec.png',recimg)
185
+
186
+ ## detect keypoints
187
+ keypoints, subset = body_estimation(comb)
188
+ # print(keypoints, subset, len(subset))
189
+ if len(subset) != 1 or (len(subset)==1 and subset[0][-1]<15):
190
+ print(f'Processing \'{fname}\'. Please import image contains one person only. Also can check segmentation mask. ')
191
+ continue
192
+
193
+ # canvas = copy.deepcopy(comb)
194
+ # canvas = util.draw_bodypose(canvas, keypoints, subset, show_number=True)
195
+ # cv2.imwrite(f'{args.output_folder}/middle_result/{fname}_keypoints.png',canvas)
196
+
197
+ comb = crop_img_with_padding(comb, keypoints, rect)
198
+
199
+
200
+ cv2.imwrite(f'{args.output_folder}/{fname}.png', comb)
201
+ print(f' -- Finished processing \'{fname}\'. --')
202
+ # except:
203
+ # print(f'Processing \'{fname}\'. Not satisfied the alignment strategy.')
204
+
205
+
206
+ if __name__ == '__main__':
207
+ torch.backends.cudnn.benchmark = True
208
+ torch.backends.cudnn.deterministic = False
209
+
210
+ t1 = time.time()
211
+ arg_formatter = argparse.ArgumentDefaultsHelpFormatter
212
+ description = 'StyleGAN-Human data process'
213
+ parser = argparse.ArgumentParser(formatter_class=arg_formatter,
214
+ description=description)
215
+ parser.add_argument('--image-folder', type=str, dest='image_folder')
216
+ parser.add_argument('--output-folder', dest='output_folder', default='results', type=str)
217
+ # parser.add_argument('--cfg', dest='cfg for segmentation', default='PP_HumanSeg/export_model/ppseg_lite_portrait_398x224_with_softmax/deploy.yaml', type=str)
218
+
219
+ print('parsing arguments')
220
+ cmd_args = parser.parse_args()
221
+ run(cmd_args)
222
+
223
+ print('total time elapsed: ', str(time.time() - t1))