Spaces:
Runtime error
Runtime error
File size: 7,185 Bytes
49b1fb3 44ee439 49b1fb3 ebace01 2f25f03 49b1fb3 44ee439 c5f5dc3 e112463 49b1fb3 05dabf4 e112463 f5ec40e 06bca0c f5ec40e 44ee439 e112463 49b1fb3 f5ec40e 1f22b14 f5ec40e 1f22b14 f5ec40e 1f22b14 f5ec40e 1f22b14 f5ec40e 2642581 f5ec40e 413b78d ebace01 8ef8e62 909ae3f 8ef8e62 0ff46a1 49b1fb3 8756061 0ff46a1 8756061 49b1fb3 ebace01 49b1fb3 ebace01 49b1fb3 ebace01 49b1fb3 0b4f7e4 49b1fb3 0ff46a1 44ee439 f5ec40e 44ee439 e112463 44ee439 e112463 44ee439 71e7dd8 44ee439 71e7dd8 44ee439 71e7dd8 44ee439 6aad21a 44ee439 71e7dd8 44ee439 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import glob
import logging
import os
from pathlib import Path
from typing import Type
import click
import numpy as np
import pandas as pd
import tiktoken
from bs4 import BeautifulSoup
from openai.embeddings_utils import get_embedding
from buster.parser import HuggingfaceParser, Parser, SphinxParser
from buster.utils import get_documents_manager_from_extension
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
EMBEDDING_MODEL = "text-embedding-ada-002"
EMBEDDING_ENCODING = "cl100k_base" # this the encoding for text-embedding-ada-002
supported_docs = {
"mila": {
"base_url": "https://docs.mila.quebec/",
"filename": "documents_mila.csv",
"parser": SphinxParser,
},
"orion": {
"base_url": "https://orion.readthedocs.io/en/stable/",
"filename": "documents_orion.csv",
"parser": SphinxParser,
},
"pytorch": {
"base_url": "https://pytorch.org/docs/stable/",
"filename": "documents_pytorch.csv",
"parser": SphinxParser,
},
"huggingface": {
"base_url": "https://huggingface.co/docs/transformers/",
"filename": "documents_huggingface.csv",
"parser": HuggingfaceParser,
},
"lightning": {
"base_url": "https://pytorch-lightning.readthedocs.io/en/stable/",
"filename": "documents_lightning.csv",
"parser": SphinxParser,
},
"godot": {
"base_url": "https://docs.godotengine.org/en/stable/",
"filename": "documents_godot.csv",
"parser": SphinxParser,
},
}
def get_document(
filepath: str,
base_url: str,
parser_cls: Type[Parser],
min_section_length: int = 100,
max_section_length: int = 2000,
) -> pd.DataFrame:
"""Extract all sections from one file.
Sections are broken into subsections if they are longer than `max_section_length`.
Sections correspond to `section` HTML tags that have a headerlink attached.
"""
with open(filepath, "r") as f:
source = f.read()
filename = Path(filepath).name
soup = BeautifulSoup(source, "html.parser")
parser = parser_cls(soup, base_url, filename, min_section_length, max_section_length)
sections = []
urls = []
names = []
for section in parser.parse():
sections.append(section.text)
urls.append(section.url)
names.append(section.name)
documents_df = pd.DataFrame.from_dict({"title": names, "url": urls, "content": sections})
return documents_df
def get_all_documents(
root_dir: str,
base_url: str,
parser_cls: Type[Parser],
min_section_length: int = 100,
max_section_length: int = 2000,
) -> pd.DataFrame:
"""Parse all HTML files in `root_dir`, and extract all sections.
Sections are broken into subsections if they are longer than `max_section_length`.
Sections correspond to `section` HTML tags that have a headerlink attached.
"""
files = glob.glob("**/*.html", root_dir=root_dir, recursive=True)
dfs = []
for file in files:
filepath = os.path.join(root_dir, file)
df = get_document(filepath, base_url, parser_cls, min_section_length, max_section_length)
dfs.append(df)
documents_df = pd.concat(dfs, ignore_index=True)
return documents_df
def compute_n_tokens(
df: pd.DataFrame, embedding_encoding: str = EMBEDDING_ENCODING, col: str = "content"
) -> pd.DataFrame:
"""Counts the tokens in the content column and adds the count to a n_tokens column."""
logger.info("Computing tokens counts...")
encoding = tiktoken.get_encoding(encoding_name=embedding_encoding)
# TODO are there unexpected consequences of allowing endoftext?
df["n_tokens"] = df[col].apply(lambda x: len(encoding.encode(x, allowed_special={"<|endoftext|>"})))
return df
def max_word_count(df: pd.DataFrame, max_words: int, col: str = "content") -> pd.DataFrame:
"""Trim the word count of an entry to max_words"""
assert df[col].apply(lambda s: isinstance(s, str)).all(), f"Column {col} must contain only strings"
word_counts_before = df[col].apply(lambda x: len(x.split()))
df[col] = df[col].apply(lambda x: " ".join(x.split()[:max_words]))
word_counts_after = df[col].apply(lambda x: len(x.split()))
trimmed = df[word_counts_before == word_counts_after]
logger.info(f"trimmed {len(trimmed)} documents to {max_words} words.")
return df
def compute_embeddings(df: pd.DataFrame, engine: str = EMBEDDING_MODEL, col="embedding") -> pd.DataFrame:
logger.info(f"Computing embeddings for {len(df)} documents...")
df[col] = df.content.apply(lambda x: np.asarray(get_embedding(x, engine=engine), dtype=np.float32))
logger.info(f"Done computing embeddings for {len(df)} documents.")
return df
def generate_embeddings_parser(root_dir: str, output_filepath: str, source: str) -> pd.DataFrame:
documents = get_all_documents(root_dir, supported_docs[source]["base_url"], supported_docs[source]["parser"])
return generate_embeddings(documents, output_filepath)
def documents_to_db(documents: pd.DataFrame, output_filepath: str):
logger.info("Preparing database...")
documents_manager = get_documents_manager_from_extension(output_filepath)(output_filepath)
sources = documents["source"].unique()
for source in sources:
documents_manager.add(source, documents)
logger.info(f"Documents saved to: {output_filepath}")
def update_source(source: str, output_filepath: str, display_name: str = None, note: str = None):
documents_manager = get_documents_manager_from_extension(output_filepath)(output_filepath)
documents_manager.update_source(source, display_name, note)
def generate_embeddings(
documents: pd.DataFrame,
output_filepath: str = "documents.db",
max_words=500,
embedding_engine: str = EMBEDDING_MODEL,
) -> pd.DataFrame:
# check that we have the appropriate columns in our dataframe
assert set(required_cols := ["content", "title", "url"]).issubset(
set(documents.columns)
), f"Your dataframe must contain {required_cols}."
# Get all documents and precompute their embeddings
documents = max_word_count(documents, max_words=max_words)
documents = compute_n_tokens(documents)
documents = compute_embeddings(documents, engine=embedding_engine)
# save the documents to a db for later use
documents_to_db(documents, output_filepath)
return documents
@click.command()
@click.argument("documents-csv")
@click.option(
"--output-filepath", default="documents.db", help='Where your database will be saved. Default is "documents.db"'
)
@click.option(
"--max-words", default=500, help="Number of maximum allowed words per document, excess is trimmed. Default is 500"
)
@click.option(
"--embeddings-engine", default=EMBEDDING_MODEL, help=f"Embedding model to use. Default is {EMBEDDING_MODEL}"
)
def main(documents_csv: str, output_filepath: str, max_words: int, embeddings_engine: str):
documents = pd.read_csv(documents_csv)
documents = generate_embeddings(documents, output_filepath, max_words, embeddings_engine)
if __name__ == "__main__":
main()
|