Spaces:
Runtime error
Runtime error
parsing names
Browse files- buster/docparser.py +49 -35
- requirements.txt +0 -3
buster/docparser.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import glob
|
|
|
2 |
import os
|
3 |
-
import pickle
|
4 |
|
5 |
import pandas as pd
|
6 |
import tiktoken
|
7 |
from bs4 import BeautifulSoup
|
8 |
from openai.embeddings_utils import cosine_similarity, get_embedding
|
9 |
|
|
|
10 |
EMBEDDING_MODEL = "text-embedding-ada-002"
|
11 |
EMBEDDING_ENCODING = "cl100k_base" # this the encoding for text-embedding-ada-002
|
12 |
|
@@ -14,7 +15,7 @@ EMBEDDING_ENCODING = "cl100k_base" # this the encoding for text-embedding-ada-0
|
|
14 |
BASE_URL = "https://docs.mila.quebec/"
|
15 |
|
16 |
|
17 |
-
def
|
18 |
"""Parse all HTML files in `root_dir`, and extract all sections.
|
19 |
|
20 |
Sections are broken into subsections if they are longer than `max_section_length`.
|
@@ -22,66 +23,78 @@ def get_all_sections(root_dir: str, max_section_length: int = 3000) -> tuple[lis
|
|
22 |
"""
|
23 |
files = glob.glob("*.html", root_dir=root_dir)
|
24 |
|
25 |
-
|
26 |
-
def get_all_subsections(soup: BeautifulSoup, level: int) -> tuple[list[str], list[str]]:
|
27 |
-
if level >= 5:
|
28 |
-
return [], []
|
29 |
-
|
30 |
found = soup.find_all('a', href=True, class_="headerlink")
|
31 |
|
32 |
sections = []
|
33 |
urls = []
|
|
|
34 |
for section_found in found:
|
35 |
section_soup = section_found.parent.parent
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
url = section_found['href']
|
|
|
38 |
|
|
|
39 |
if len(section) > max_section_length:
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
else:
|
44 |
sections.append(section)
|
45 |
urls.append(url)
|
|
|
46 |
|
47 |
-
return sections, urls
|
48 |
|
49 |
sections = []
|
50 |
urls = []
|
|
|
51 |
for file in files:
|
52 |
filepath = os.path.join(root_dir, file)
|
53 |
with open(filepath, "r") as file:
|
54 |
source = file.read()
|
55 |
|
56 |
soup = BeautifulSoup(source, "html.parser")
|
57 |
-
sections_file, urls_file = get_all_subsections(soup
|
58 |
sections.extend(sections_file)
|
59 |
|
60 |
urls_file = [BASE_URL + os.path.basename(file.name) + url for url in urls_file]
|
61 |
urls.extend(urls_file)
|
62 |
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
|
|
|
70 |
|
71 |
-
def read_sections(filepath: str) -> list[str]:
|
72 |
-
with open(filepath, "rb") as fp:
|
73 |
-
sections = pickle.load(fp)
|
74 |
|
75 |
-
|
|
|
76 |
|
77 |
|
78 |
-
def
|
79 |
-
|
80 |
-
|
81 |
-
with open(fname, "rb") as fp:
|
82 |
-
documents = pickle.load(fp)
|
83 |
-
df["documents"] = documents
|
84 |
-
return df
|
85 |
|
86 |
|
87 |
def compute_n_tokens(df: pd.DataFrame) -> pd.DataFrame:
|
@@ -97,7 +110,7 @@ def precompute_embeddings(df: pd.DataFrame) -> pd.DataFrame:
|
|
97 |
|
98 |
def generate_embeddings(filepath: str, output_csv: str) -> pd.DataFrame:
|
99 |
# Get all documents and precompute their embeddings
|
100 |
-
df =
|
101 |
df = compute_n_tokens(df)
|
102 |
df = precompute_embeddings(df)
|
103 |
df.to_csv(output_csv)
|
@@ -106,14 +119,15 @@ def generate_embeddings(filepath: str, output_csv: str) -> pd.DataFrame:
|
|
106 |
|
107 |
if __name__ == "__main__":
|
108 |
root_dir = "/home/hadrien/perso/mila-docs/output/"
|
109 |
-
save_filepath = os.path.join(root_dir, "
|
110 |
|
111 |
# How to write
|
112 |
-
|
113 |
-
|
114 |
|
115 |
# How to load
|
116 |
-
|
117 |
|
118 |
-
#
|
119 |
df = generate_embeddings(filepath=save_filepath, output_csv="data/document_embeddings.csv")
|
|
|
|
1 |
import glob
|
2 |
+
import math
|
3 |
import os
|
|
|
4 |
|
5 |
import pandas as pd
|
6 |
import tiktoken
|
7 |
from bs4 import BeautifulSoup
|
8 |
from openai.embeddings_utils import cosine_similarity, get_embedding
|
9 |
|
10 |
+
|
11 |
EMBEDDING_MODEL = "text-embedding-ada-002"
|
12 |
EMBEDDING_ENCODING = "cl100k_base" # this the encoding for text-embedding-ada-002
|
13 |
|
|
|
15 |
BASE_URL = "https://docs.mila.quebec/"
|
16 |
|
17 |
|
18 |
+
def get_all_documents(root_dir: str, max_section_length: int = 3000) -> pd.DataFrame:
|
19 |
"""Parse all HTML files in `root_dir`, and extract all sections.
|
20 |
|
21 |
Sections are broken into subsections if they are longer than `max_section_length`.
|
|
|
23 |
"""
|
24 |
files = glob.glob("*.html", root_dir=root_dir)
|
25 |
|
26 |
+
def get_all_subsections(soup: BeautifulSoup) -> tuple[list[str], list[str], list[str]]:
|
|
|
|
|
|
|
|
|
27 |
found = soup.find_all('a', href=True, class_="headerlink")
|
28 |
|
29 |
sections = []
|
30 |
urls = []
|
31 |
+
names = []
|
32 |
for section_found in found:
|
33 |
section_soup = section_found.parent.parent
|
34 |
+
section_href = section_soup.find_all('a', href=True, class_="headerlink")
|
35 |
+
|
36 |
+
# If sections has subsections, keep only the part before the first subsection
|
37 |
+
if len(section_href) > 1:
|
38 |
+
section_siblings = section_soup.section.previous_siblings
|
39 |
+
section = [sibling.text for sibling in section_siblings]
|
40 |
+
section = ''.join(section[::-1])[1:]
|
41 |
+
else:
|
42 |
+
section = section_soup.text[1:]
|
43 |
+
|
44 |
url = section_found['href']
|
45 |
+
name = section_found.parent.text[:-1]
|
46 |
|
47 |
+
# If text is too long, split into chunks of equal sizes
|
48 |
if len(section) > max_section_length:
|
49 |
+
n_chunks = math.ceil(len(section) / float(max_section_length))
|
50 |
+
separator_index = math.floor(len(section) / n_chunks)
|
51 |
+
|
52 |
+
section_chunks = [section[separator_index * i: separator_index * (i + 1)] for i in range(n_chunks)]
|
53 |
+
url_chunks = [url] * n_chunks
|
54 |
+
name_chunks = [name] * n_chunks
|
55 |
+
|
56 |
+
sections.extend(section_chunks)
|
57 |
+
urls.extend(url_chunks)
|
58 |
+
names.extend(name_chunks)
|
59 |
else:
|
60 |
sections.append(section)
|
61 |
urls.append(url)
|
62 |
+
names.append(name)
|
63 |
|
64 |
+
return sections, urls, names
|
65 |
|
66 |
sections = []
|
67 |
urls = []
|
68 |
+
names = []
|
69 |
for file in files:
|
70 |
filepath = os.path.join(root_dir, file)
|
71 |
with open(filepath, "r") as file:
|
72 |
source = file.read()
|
73 |
|
74 |
soup = BeautifulSoup(source, "html.parser")
|
75 |
+
sections_file, urls_file, names_file = get_all_subsections(soup)
|
76 |
sections.extend(sections_file)
|
77 |
|
78 |
urls_file = [BASE_URL + os.path.basename(file.name) + url for url in urls_file]
|
79 |
urls.extend(urls_file)
|
80 |
|
81 |
+
names.extend(names_file)
|
|
|
82 |
|
83 |
+
documents_df = pd.DataFrame.from_dict({
|
84 |
+
'name': names,
|
85 |
+
'url': urls,
|
86 |
+
'text': sections
|
87 |
+
})
|
88 |
|
89 |
+
return documents_df
|
90 |
|
|
|
|
|
|
|
91 |
|
92 |
+
def write_documents(filepath: str, documents_df: pd.DataFrame):
|
93 |
+
documents_df.to_csv(filepath)
|
94 |
|
95 |
|
96 |
+
def read_documents(filepath: str) -> pd.DataFrame:
|
97 |
+
return pd.read_csv(filepath)
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
100 |
def compute_n_tokens(df: pd.DataFrame) -> pd.DataFrame:
|
|
|
110 |
|
111 |
def generate_embeddings(filepath: str, output_csv: str) -> pd.DataFrame:
|
112 |
# Get all documents and precompute their embeddings
|
113 |
+
df = read_documents(filepath)['text']
|
114 |
df = compute_n_tokens(df)
|
115 |
df = precompute_embeddings(df)
|
116 |
df.to_csv(output_csv)
|
|
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
root_dir = "/home/hadrien/perso/mila-docs/output/"
|
122 |
+
save_filepath = os.path.join(root_dir, "documents.csv")
|
123 |
|
124 |
# How to write
|
125 |
+
documents_df = get_all_documents(root_dir)
|
126 |
+
write_documents(save_filepath, documents_df)
|
127 |
|
128 |
# How to load
|
129 |
+
documents_df = read_documents(save_filepath)
|
130 |
|
131 |
+
# precompute the document embeddings
|
132 |
df = generate_embeddings(filepath=save_filepath, output_csv="data/document_embeddings.csv")
|
133 |
+
|
requirements.txt
CHANGED
@@ -1,8 +1,5 @@
|
|
1 |
bs4
|
2 |
numpy
|
3 |
-
<<<<<<< HEAD
|
4 |
tiktoken
|
5 |
-
=======
|
6 |
openai
|
7 |
pandas
|
8 |
-
>>>>>>> fe2ece9 (parsing urls)
|
|
|
1 |
bs4
|
2 |
numpy
|
|
|
3 |
tiktoken
|
|
|
4 |
openai
|
5 |
pandas
|
|