File size: 19,819 Bytes
59da1c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
import matplotlib.pyplot as plt
import pydantic
import time
import numpy as np
from tqdm import tqdm, trange
import torch
from torch import nn
from diffusers import StableDiffusionPipeline
import clip
from dreamsim import dreamsim
from ribs.archives import GridArchive
from ribs.schedulers import Scheduler
from ribs.emitters import GaussianEmitter
import itertools
from ribs.visualize import grid_archive_heatmap


DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
print("Torch device:", DEVICE)

# Use float16 for GPU, float32 for CPU.
TORCH_DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
print("Torch dtype:", TORCH_DTYPE)
IMG_WIDTH = 256
IMG_HEIGHT = 256
SD_IN_HEIGHT = 32
SD_IN_WIDTH = 32
SD_CHECKPOINT = "lambdalabs/miniSD-diffusers"

BATCH_SIZE = 4
SD_IN_CHANNELS = 4
SD_IN_SHAPE = (
    BATCH_SIZE,
    SD_IN_CHANNELS,
    SD_IN_HEIGHT,
    SD_IN_WIDTH,
)

SDPIPE = StableDiffusionPipeline.from_pretrained(
    SD_CHECKPOINT,
    torch_dtype=TORCH_DTYPE,
    safety_checker=None,  # For faster inference.
    requires_safety_checker=False,
)

SDPIPE.set_progress_bar_config(disable=True)
SDPIPE = SDPIPE.to(DEVICE)

GRID_SIZE = (20, 20)
SEED = 123
np.random.seed(SEED)
torch.manual_seed(SEED)

# INIT_POP = 200  # Initial population.
# TOTAL_ITRS = 200 # Total number of iterations.


class DivProj(nn.Module):
    def __init__(self, input_dim, latent_dim=2):
        super().__init__()
        self.proj = nn.Sequential(
            nn.Linear(in_features=input_dim, out_features=latent_dim),
        )

    def forward(self, x):
        """Get diversity representations."""
        x = self.proj(x)
        return x

    def calc_dis(self, x1, x2):
        """Calculate diversity distance as (squared) L2 distance."""
        x1 = self.forward(x1)
        x2 = self.forward(x2)
        return torch.sum(torch.square(x1 - x2), -1)

    def triplet_delta_dis(self, ref, x1, x2):
        """Calculate delta distance comparing x1 and x2 to ref."""
        x1 = self.forward(x1)
        x2 = self.forward(x2)
        ref = self.forward(ref)
        return (torch.sum(torch.square(ref - x1), -1) -
                torch.sum(torch.square(ref - x2), -1))


# Triplet loss with margin 0.05.
# The binary preference labels are scaled to y = 1 or -1 for the loss, where y = 1 means x2 is more similar to ref than x1.
loss_fn = lambda y, delta_dis: torch.max(
    torch.tensor([0.0]).to(DEVICE), 0.05 - (y * 2 - 1) * delta_dis
).mean()


def fit_div_proj(inputs, dreamsim_features, latent_dim, batch_size=32):
    """Trains the DivProj model on ground-truth labels."""
    t = time.time()
    model = DivProj(input_dim=inputs.shape[-1], latent_dim=latent_dim)
    model.to(DEVICE)

    optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

    n_pref_data = inputs.shape[0]
    ref = inputs[:, 0]
    x1 = inputs[:, 1]
    x2 = inputs[:, 2]

    n_train = int(n_pref_data * 0.75)
    n_val = n_pref_data - n_train

    # Split data into train and val.
    ref_train = ref[:n_train]
    x1_train = x1[:n_train]
    x2_train = x2[:n_train]
    ref_val = ref[n_train:]
    x1_val = x1[n_train:]
    x2_val = x2[n_train:]

    # Split DreamSim features into train and val.
    ref_dreamsim_features = dreamsim_features[:, 0]
    x1_dreamsim_features = dreamsim_features[:, 1]
    x2_dreamsim_features = dreamsim_features[:, 2]
    ref_gt_train = ref_dreamsim_features[:n_train]
    x1_gt_train = x1_dreamsim_features[:n_train]
    x2_gt_train = x2_dreamsim_features[:n_train]
    ref_gt_val = ref_dreamsim_features[n_train:]
    x1_gt_val = x1_dreamsim_features[n_train:]
    x2_gt_val = x2_dreamsim_features[n_train:]

    val_acc = []
    n_iters_per_epoch = max((n_train) // batch_size, 1)
    for epoch in range(200):
        for _ in range(n_iters_per_epoch):
            optimizer.zero_grad()

            idx = np.random.choice(n_train, batch_size)
            batch_ref = ref_train[idx].float()
            batch1 = x1_train[idx].float()
            batch2 = x2_train[idx].float()

            # Get delta distance from model.
            delta_dis = model.triplet_delta_dis(batch_ref, batch1, batch2)

            # Get preference labels from DreamSim features.
            gt_dis = torch.nn.functional.cosine_similarity(
                ref_gt_train[idx], x2_gt_train[idx], dim=-1
            ) - torch.nn.functional.cosine_similarity(
                ref_gt_train[idx], x1_gt_train[idx], dim=-1
            )
            gt = (gt_dis > 0).to(TORCH_DTYPE) # if distance from the two sims are greater than 0, convert gt to torch_type 

            loss = loss_fn(gt, delta_dis)
            loss.backward()
            optimizer.step()

        # Validate.
        n_correct = 0
        n_total = 0
        with torch.no_grad():
            idx = np.arange(n_val)
            batch_ref = ref_val[idx].float()
            batch1 = x1_val[idx].float()
            batch2 = x2_val[idx].float()
            delta_dis = model.triplet_delta_dis(batch_ref, batch1, batch2)
            pred = delta_dis > 0
            gt_dis = torch.nn.functional.cosine_similarity(
                ref_gt_val[idx], x2_gt_val[idx], dim=-1
            ) - torch.nn.functional.cosine_similarity(
                ref_gt_val[idx], x1_gt_val[idx], dim=-1
            )
            gt = gt_dis > 0
            n_correct += (pred == gt).sum().item()
            n_total += len(idx)

        acc = n_correct / n_total
        val_acc.append(acc)

        # Early stopping if val_acc does not improve for 10 epochs.
        if epoch > 10 and np.mean(val_acc[-10:]) < np.mean(val_acc[-11:-1]):
            break

    print(
        f"{np.round(time.time()- t, 1)}s ({epoch+1} epochs) | DivProj (n={n_pref_data}) fitted with val acc.: {acc}"
    )

    return model.to(TORCH_DTYPE), acc


def compute_diversity_measures(clip_features, diversity_model):
    with torch.no_grad():
        measures = diversity_model(clip_features).detach().cpu().numpy()
    return measures


def tensor_to_list(tensor):
    sols = tensor.detach().cpu().numpy().astype(np.float32)
    return sols.reshape(sols.shape[0], -1)


def list_to_tensor(list_):
    sols = np.array(list_).reshape(
        len(list_), 4, SD_IN_HEIGHT, SD_IN_WIDTH
    )  # Hard-coded for now.
    return torch.tensor(sols, dtype=TORCH_DTYPE, device=DEVICE)


def create_scheduler(
    sols,
    objs,
    clip_features,
    diversity_model,
    seed=None,
):
    measures = compute_diversity_measures(clip_features, diversity_model)
    archive_bounds = np.array(
        [np.quantile(measures, 0.01, axis=0), np.quantile(measures, 0.99, axis=0)]
    ).T

    sols = tensor_to_list(sols)

    # Set up archive.
    archive = GridArchive(
        solution_dim=len(sols[0]), dims=GRID_SIZE, ranges=archive_bounds, seed=SEED
    )

    # Add initial solutions to the archive.
    archive.add(sols, objs, measures)

    # Set up the GaussianEmitter.
    emitters = [
        GaussianEmitter(
            archive=archive,
            sigma=0.1,
            initial_solutions=archive.sample_elites(BATCH_SIZE)["solution"],
            batch_size=BATCH_SIZE,
            seed=SEED,
        )
    ]

    # Return the archive and scheduler.
    return archive, Scheduler(archive, emitters)


def plot_archive(archive):
    plt.figure(figsize=(6, 4.5))
    grid_archive_heatmap(archive, vmin=0, vmax=100)
    plt.xlabel("Diversity Metric 1")
    plt.ylabel("Diversity Metric 2")
    return plt


def run_qdhf(prompt:str, init_pop: int=200, total_itrs: int=200):
    INIT_POP = init_pop
    TOTAL_ITRS = total_itrs

    # This tutorial uses ViT-B/32, you may use other checkpoints depending on your resources and need.
    CLIP_MODEL, CLIP_PREPROCESS = clip.load("ViT-B/32", device=DEVICE)
    CLIP_MODEL.eval()
    for p in CLIP_MODEL.parameters():
        p.requires_grad_(False)

    def compute_clip_scores(imgs, text, return_clip_features=False):
        """Computes CLIP scores for a batch of images and a given text prompt."""
        img_tensor = torch.stack([CLIP_PREPROCESS(img) for img in imgs]).to(DEVICE)
        tokenized_text = clip.tokenize([text]).to(DEVICE)
        img_logits, _text_logits = CLIP_MODEL(img_tensor, tokenized_text)
        img_logits = img_logits.detach().cpu().numpy().astype(np.float32)[:, 0]
        img_logits = 1 / img_logits * 100
        # Remap the objective from minimizing [0, 10] to maximizing [0, 100]
        img_logits = (10.0 - img_logits) * 10.0

        if return_clip_features:
            clip_features = CLIP_MODEL.encode_image(img_tensor).to(TORCH_DTYPE)
            return img_logits, clip_features
        else:
            return img_logits

    DREAMSIM_MODEL, DREAMSIM_PREPROCESS = dreamsim(
        pretrained=True, dreamsim_type="open_clip_vitb32", device=DEVICE
    )

    def evaluate_lsi(
        latents,
        prompt,
        return_features=False,
        diversity_model=None,
    ):
        """Evaluates the objective of LSI for a batch of latents and a given text prompt."""

        images = SDPIPE(
            prompt,
            num_images_per_prompt=latents.shape[0],
            latents=latents,
            # num_inference_steps=1,  # For testing.
        ).images

        objs, clip_features = compute_clip_scores(
            images,
            prompt,
            return_clip_features=True,
        )

        images = torch.cat([DREAMSIM_PREPROCESS(img) for img in images]).to(DEVICE)
        dreamsim_features = DREAMSIM_MODEL.embed(images)

        if diversity_model is not None:
            measures = compute_diversity_measures(clip_features, diversity_model)
        else:
            measures = None

        if return_features:
            return objs, measures, clip_features, dreamsim_features
        else:
            return objs, measures


    update_schedule = [1, 21, 51, 101]  # Iterations on which to update the archive.
    n_pref_data = 1000  # Number of preferences used in each update.

    archive = None

    best = 0.0
    for itr in trange(1, TOTAL_ITRS + 1):
        # Update archive and scheduler if needed.
        if itr in update_schedule:
            if archive is None:
                tqdm.write("Initializing archive and diversity projection.")

                all_sols = []
                all_clip_features = []
                all_dreamsim_features = []
                all_objs = []

                # Sample random solutions and get judgment on similarity.
                n_batches = INIT_POP // BATCH_SIZE
                for _ in range(n_batches):
                    sols = torch.randn(SD_IN_SHAPE, device=DEVICE, dtype=TORCH_DTYPE)
                    objs, _, clip_features, dreamsim_features = evaluate_lsi(
                        sols, prompt, return_features=True
                    )
                    all_sols.append(sols)
                    all_clip_features.append(clip_features)
                    all_dreamsim_features.append(dreamsim_features)
                    all_objs.append(objs)
                all_sols = torch.concat(all_sols, dim=0)
                all_clip_features = torch.concat(all_clip_features, dim=0)
                all_dreamsim_features = torch.concat(all_dreamsim_features, dim=0)
                all_objs = np.concatenate(all_objs, axis=0)

                # Initialize the diversity projection model.
                div_proj_data = []
                div_proj_labels = []
                for _ in range(n_pref_data):
                    idx = np.random.choice(all_sols.shape[0], 3)
                    div_proj_data.append(all_clip_features[idx])
                    div_proj_labels.append(all_dreamsim_features[idx])
                div_proj_data = torch.concat(div_proj_data, dim=0)
                div_proj_labels = torch.concat(div_proj_labels, dim=0)
                div_proj_data = div_proj_data.reshape(n_pref_data, 3, -1)
                div_proj_label = div_proj_labels.reshape(n_pref_data, 3, -1)
                diversity_model, div_proj_acc = fit_div_proj(
                    div_proj_data,
                    div_proj_label,
                    latent_dim=2,
                )

            else:
                tqdm.write("Updating archive and diversity projection.")

                # Get all the current solutions and collect feedback.
                all_sols = list_to_tensor(archive.data("solution"))
                n_batches = np.ceil(len(all_sols) / BATCH_SIZE).astype(int)
                all_clip_features = []
                all_dreamsim_features = []
                all_objs = []
                for i in range(n_batches):
                    sols = all_sols[i * BATCH_SIZE : (i + 1) * BATCH_SIZE]
                    objs, _, clip_features, dreamsim_features = evaluate_lsi(
                        sols, prompt, return_features=True
                    )
                    all_clip_features.append(clip_features)
                    all_dreamsim_features.append(dreamsim_features)
                    all_objs.append(objs)
                all_clip_features = torch.concat(
                    all_clip_features, dim=0
                )  # n_pref_data * 3, dim
                all_dreamsim_features = torch.concat(all_dreamsim_features, dim=0)
                all_objs = np.concatenate(all_objs, axis=0)

                # Update the diversity projection model.
                additional_features = []
                additional_labels = []
                for _ in range(n_pref_data):
                    idx = np.random.choice(all_sols.shape[0], 3)
                    additional_features.append(all_clip_features[idx])
                    additional_labels.append(all_dreamsim_features[idx])
                additional_features = torch.concat(additional_features, dim=0)
                additional_labels = torch.concat(additional_labels, dim=0)
                additional_div_proj_data = additional_features.reshape(n_pref_data, 3, -1)
                additional_div_proj_label = additional_labels.reshape(n_pref_data, 3, -1)
                div_proj_data = torch.concat(
                    (div_proj_data, additional_div_proj_data), axis=0
                )
                div_proj_label = torch.concat(
                    (div_proj_label, additional_div_proj_label), axis=0
                )
                diversity_model, div_proj_acc = fit_div_proj(
                    div_proj_data,
                    div_proj_label,
                    latent_dim=2,
                )

            archive, scheduler = create_scheduler(
                all_sols,
                all_objs,
                all_clip_features,
                diversity_model,
                seed=SEED,
            )

        # Primary QD loop.
        sols = scheduler.ask()
        sols = list_to_tensor(sols)
        objs, measures, clip_features, dreamsim_features = evaluate_lsi(
            sols, prompt, return_features=True, diversity_model=diversity_model
        )
        best = max(best, max(objs))
        scheduler.tell(objs, measures)

        # This can be used as a flag to save on the final iteration, but note that
        # we do not save results in this tutorial.
        final_itr = itr == TOTAL_ITRS

        # Update the summary statistics for the archive.
        qd_score, coverage = archive.stats.norm_qd_score, archive.stats.coverage

        tqdm.write(f"QD score: {np.round(qd_score, 2)} Coverage: {coverage * 100}")

        plt = plot_archive(archive)
        yield archive, plt

    plt = plot_archive(archive)
    return archive, plt


def many_pictures(archive, prompt:str):
    # Modify this to determine how many images to plot along each dimension.
    img_freq = (
        4,  # Number of columns of images.
        4,  # Number of rows of images.
    )

    # List of images.
    imgs = []

    # Convert archive to a df with solutions available.
    df = archive.data(return_type="pandas")

    # Compute the min and max measures for which solutions were found.
    measure_bounds = np.array(
        [
            (df["measures_0"].min(), df["measures_0"].max()),
            (df["measures_1"].min(), df["measures_1"].max()),
        ]
    )

    archive_bounds = np.array(
        [archive.boundaries[0][[0, -1]], archive.boundaries[1][[0, -1]]]
    )


    delta_measures_0 = (archive_bounds[0][1] - archive_bounds[0][0]) / img_freq[0]
    delta_measures_1 = (archive_bounds[1][1] - archive_bounds[1][0]) / img_freq[1]


    for col, row in itertools.product(range(img_freq[1]), range(img_freq[0])):
        # Compute bounds of a box in measure space.
        measures_0_low = archive_bounds[0][0] + delta_measures_0 * row
        measures_0_high = archive_bounds[0][0] + delta_measures_0 * (row + 1)
        measures_1_low = archive_bounds[1][0] + delta_measures_1 * col
        measures_1_high = archive_bounds[1][0] + delta_measures_1 * (col + 1)

        if row == 0:
            measures_0_low = measure_bounds[0][0]
        if col == 0:
            measures_1_low = measure_bounds[1][0]
        if row == img_freq[0] - 1:
            measures_0_high = measure_bounds[0][1]
        if col == img_freq[1] - 1:
            measures_0_high = measure_bounds[1][1]

        # Query for a solution with measures within this box.
        query_string = (
            f"{measures_0_low} <= measures_0 & measures_0 <= {measures_0_high} & "
            f"{measures_1_low} <= measures_1 & measures_1 <= {measures_1_high}"
        )
        df_box = df.query(query_string)

        if not df_box.empty:
            # Randomly sample a solution from the box.
            # Stable Diffusion solutions have SD_IN_CHANNELS * SD_IN_HEIGHT * SD_IN_WIDTH
            # dimensions, so the final solution col is solution_(x-1).
            sol = (
                df_box.loc[
                    :,
                    "solution_0" : "solution_{}".format(
                        SD_IN_CHANNELS * SD_IN_HEIGHT * SD_IN_WIDTH - 1
                    ),
                ]
                .sample(n=1)
                .iloc[0]
            )

            # Convert the latent vector solution to an image.
            latents = torch.tensor(sol.to_numpy()).reshape(
                (1, SD_IN_CHANNELS, SD_IN_HEIGHT, SD_IN_WIDTH)
            )
            latents = latents.to(TORCH_DTYPE).to(DEVICE)
            img = SDPIPE(
                prompt,
                num_images_per_prompt=1,
                latents=latents,
                # num_inference_steps=1,  # For testing.
            ).images[0]

            img = torch.from_numpy(np.array(img)).permute(2, 0, 1) / 255.0
            imgs.append(img)
        else:
            imgs.append(torch.zeros((3, IMG_HEIGHT, IMG_WIDTH)))
    from torchvision.utils import make_grid


    def create_archive_tick_labels(measure_range, num_ticks):
        delta = (measure_range[1] - measure_range[0]) / num_ticks
        ticklabels = [round(delta * p + measure_range[0], 3) for p in range(num_ticks + 1)]
        return ticklabels


    plt.figure(figsize=(img_freq[0] * 2, img_freq[0] * 2))
    img_grid = make_grid(imgs, nrow=img_freq[0], padding=0)
    img_grid = np.transpose(img_grid.cpu().numpy(), (1, 2, 0))
    plt.imshow(img_grid)

    plt.xlabel("")
    num_x_ticks = img_freq[0]
    x_ticklabels = create_archive_tick_labels(measure_bounds[0], num_x_ticks)
    x_tick_range = img_grid.shape[1]
    x_ticks = np.arange(0, x_tick_range + 1e-9, step=x_tick_range / num_x_ticks)
    plt.xticks(x_ticks, x_ticklabels)

    plt.ylabel("")
    num_y_ticks = img_freq[1]
    y_ticklabels = create_archive_tick_labels(measure_bounds[1], num_y_ticks)
    y_ticklabels.reverse()
    y_tick_range = img_grid.shape[0]
    y_ticks = np.arange(0, y_tick_range + 1e-9, step=y_tick_range / num_y_ticks)
    plt.yticks(y_ticks, y_ticklabels)
    plt.tight_layout()

    return plt