Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,711 Bytes
87d40d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from diffusers import DDPMScheduler, UNet2DConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
# WARN: the hf-internal-testing/tiny-random-t5 text encoder has some non-determinism in the `save_load` tests.
class IFPipelineTesterMixin:
def _get_dummy_components(self):
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
unet = UNet2DConditionModel(
sample_size=32,
layers_per_block=1,
block_out_channels=[32, 64],
down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
],
mid_block_type="UNetMidBlock2DSimpleCrossAttn",
up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"],
in_channels=3,
out_channels=6,
cross_attention_dim=32,
encoder_hid_dim=32,
attention_head_dim=8,
addition_embed_type="text",
addition_embed_type_num_heads=2,
cross_attention_norm="group_norm",
resnet_time_scale_shift="scale_shift",
act_fn="gelu",
)
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
scheduler = DDPMScheduler(
num_train_timesteps=1000,
beta_schedule="squaredcos_cap_v2",
beta_start=0.0001,
beta_end=0.02,
thresholding=True,
dynamic_thresholding_ratio=0.95,
sample_max_value=1.0,
prediction_type="epsilon",
variance_type="learned_range",
)
torch.manual_seed(0)
watermarker = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def _get_superresolution_dummy_components(self):
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
unet = UNet2DConditionModel(
sample_size=32,
layers_per_block=[1, 2],
block_out_channels=[32, 64],
down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
],
mid_block_type="UNetMidBlock2DSimpleCrossAttn",
up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"],
in_channels=6,
out_channels=6,
cross_attention_dim=32,
encoder_hid_dim=32,
attention_head_dim=8,
addition_embed_type="text",
addition_embed_type_num_heads=2,
cross_attention_norm="group_norm",
resnet_time_scale_shift="scale_shift",
act_fn="gelu",
class_embed_type="timestep",
mid_block_scale_factor=1.414,
time_embedding_act_fn="gelu",
time_embedding_dim=32,
)
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
scheduler = DDPMScheduler(
num_train_timesteps=1000,
beta_schedule="squaredcos_cap_v2",
beta_start=0.0001,
beta_end=0.02,
thresholding=True,
dynamic_thresholding_ratio=0.95,
sample_max_value=1.0,
prediction_type="epsilon",
variance_type="learned_range",
)
torch.manual_seed(0)
image_noising_scheduler = DDPMScheduler(
num_train_timesteps=1000,
beta_schedule="squaredcos_cap_v2",
beta_start=0.0001,
beta_end=0.02,
)
torch.manual_seed(0)
watermarker = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
# this test is modified from the base class because if pipelines set the text encoder
# as optional with the intention that the user is allowed to encode the prompt once
# and then pass the embeddings directly to the pipeline. The base class test uses
# the unmodified arguments from `self.get_dummy_inputs` which will pass the unencoded
# prompt to the pipeline when the text encoder is set to None, throwing an error.
# So we make the test reflect the intended usage of setting the text encoder to None.
def _test_save_load_optional_components(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs["prompt"]
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
if "image" in inputs:
image = inputs["image"]
else:
image = None
if "mask_image" in inputs:
mask_image = inputs["mask_image"]
else:
mask_image = None
if "original_image" in inputs:
original_image = inputs["original_image"]
else:
original_image = None
prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(prompt)
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
inputs["image"] = image
if mask_image is not None:
inputs["mask_image"] = mask_image
if original_image is not None:
inputs["original_image"] = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
inputs["image"] = image
if mask_image is not None:
inputs["mask_image"] = mask_image
if original_image is not None:
inputs["original_image"] = original_image
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)
# Modified from `PipelineTesterMixin` to set the attn processor as it's not serialized.
# This should be handled in the base test and then this method can be removed.
def _test_save_load_local(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)
|