File size: 9,015 Bytes
87d40d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
from typing import List

import faiss
import numpy as np
import torch
from datasets import Dataset, load_dataset
from PIL import Image
from transformers import CLIPFeatureExtractor, CLIPModel, PretrainedConfig

from diffusers import logging


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def normalize_images(images: List[Image.Image]):
    images = [np.array(image) for image in images]
    images = [image / 127.5 - 1 for image in images]
    return images


def preprocess_images(images: List[np.array], feature_extractor: CLIPFeatureExtractor) -> torch.Tensor:
    """
    Preprocesses a list of images into a batch of tensors.

    Args:
        images (:obj:`List[Image.Image]`):
            A list of images to preprocess.

    Returns:
        :obj:`torch.Tensor`: A batch of tensors.
    """
    images = [np.array(image) for image in images]
    images = [(image + 1.0) / 2.0 for image in images]
    images = feature_extractor(images, return_tensors="pt").pixel_values
    return images


class IndexConfig(PretrainedConfig):
    def __init__(
        self,
        clip_name_or_path="openai/clip-vit-large-patch14",
        dataset_name="Isamu136/oxford_pets_with_l14_emb",
        image_column="image",
        index_name="embeddings",
        index_path=None,
        dataset_set="train",
        metric_type=faiss.METRIC_L2,
        faiss_device=-1,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.clip_name_or_path = clip_name_or_path
        self.dataset_name = dataset_name
        self.image_column = image_column
        self.index_name = index_name
        self.index_path = index_path
        self.dataset_set = dataset_set
        self.metric_type = metric_type
        self.faiss_device = faiss_device


class Index:
    """
    Each index for a retrieval model is specific to the clip model used and the dataset used.
    """

    def __init__(self, config: IndexConfig, dataset: Dataset):
        self.config = config
        self.dataset = dataset
        self.index_initialized = False
        self.index_name = config.index_name
        self.index_path = config.index_path
        self.init_index()

    def set_index_name(self, index_name: str):
        self.index_name = index_name

    def init_index(self):
        if not self.index_initialized:
            if self.index_path and self.index_name:
                try:
                    self.dataset.add_faiss_index(
                        column=self.index_name, metric_type=self.config.metric_type, device=self.config.faiss_device
                    )
                    self.index_initialized = True
                except Exception as e:
                    print(e)
                    logger.info("Index not initialized")
            if self.index_name in self.dataset.features:
                self.dataset.add_faiss_index(column=self.index_name)
                self.index_initialized = True

    def build_index(
        self,
        model=None,
        feature_extractor: CLIPFeatureExtractor = None,
        torch_dtype=torch.float32,
    ):
        if not self.index_initialized:
            model = model or CLIPModel.from_pretrained(self.config.clip_name_or_path).to(dtype=torch_dtype)
            feature_extractor = feature_extractor or CLIPFeatureExtractor.from_pretrained(
                self.config.clip_name_or_path
            )
            self.dataset = get_dataset_with_emb_from_clip_model(
                self.dataset,
                model,
                feature_extractor,
                image_column=self.config.image_column,
                index_name=self.config.index_name,
            )
            self.init_index()

    def retrieve_imgs(self, vec, k: int = 20):
        vec = np.array(vec).astype(np.float32)
        return self.dataset.get_nearest_examples(self.index_name, vec, k=k)

    def retrieve_imgs_batch(self, vec, k: int = 20):
        vec = np.array(vec).astype(np.float32)
        return self.dataset.get_nearest_examples_batch(self.index_name, vec, k=k)

    def retrieve_indices(self, vec, k: int = 20):
        vec = np.array(vec).astype(np.float32)
        return self.dataset.search(self.index_name, vec, k=k)

    def retrieve_indices_batch(self, vec, k: int = 20):
        vec = np.array(vec).astype(np.float32)
        return self.dataset.search_batch(self.index_name, vec, k=k)


class Retriever:
    def __init__(
        self,
        config: IndexConfig,
        index: Index = None,
        dataset: Dataset = None,
        model=None,
        feature_extractor: CLIPFeatureExtractor = None,
    ):
        self.config = config
        self.index = index or self._build_index(config, dataset, model=model, feature_extractor=feature_extractor)

    @classmethod
    def from_pretrained(
        cls,
        retriever_name_or_path: str,
        index: Index = None,
        dataset: Dataset = None,
        model=None,
        feature_extractor: CLIPFeatureExtractor = None,
        **kwargs,
    ):
        config = kwargs.pop("config", None) or IndexConfig.from_pretrained(retriever_name_or_path, **kwargs)
        return cls(config, index=index, dataset=dataset, model=model, feature_extractor=feature_extractor)

    @staticmethod
    def _build_index(
        config: IndexConfig, dataset: Dataset = None, model=None, feature_extractor: CLIPFeatureExtractor = None
    ):
        dataset = dataset or load_dataset(config.dataset_name)
        dataset = dataset[config.dataset_set]
        index = Index(config, dataset)
        index.build_index(model=model, feature_extractor=feature_extractor)
        return index

    def save_pretrained(self, save_directory):
        os.makedirs(save_directory, exist_ok=True)
        if self.config.index_path is None:
            index_path = os.path.join(save_directory, "hf_dataset_index.faiss")
            self.index.dataset.get_index(self.config.index_name).save(index_path)
            self.config.index_path = index_path
        self.config.save_pretrained(save_directory)

    def init_retrieval(self):
        logger.info("initializing retrieval")
        self.index.init_index()

    def retrieve_imgs(self, embeddings: np.ndarray, k: int):
        return self.index.retrieve_imgs(embeddings, k)

    def retrieve_imgs_batch(self, embeddings: np.ndarray, k: int):
        return self.index.retrieve_imgs_batch(embeddings, k)

    def retrieve_indices(self, embeddings: np.ndarray, k: int):
        return self.index.retrieve_indices(embeddings, k)

    def retrieve_indices_batch(self, embeddings: np.ndarray, k: int):
        return self.index.retrieve_indices_batch(embeddings, k)

    def __call__(
        self,
        embeddings,
        k: int = 20,
    ):
        return self.index.retrieve_imgs(embeddings, k)


def map_txt_to_clip_feature(clip_model, tokenizer, prompt):
    text_inputs = tokenizer(
        prompt,
        padding="max_length",
        max_length=tokenizer.model_max_length,
        return_tensors="pt",
    )
    text_input_ids = text_inputs.input_ids

    if text_input_ids.shape[-1] > tokenizer.model_max_length:
        removed_text = tokenizer.batch_decode(text_input_ids[:, tokenizer.model_max_length :])
        logger.warning(
            "The following part of your input was truncated because CLIP can only handle sequences up to"
            f" {tokenizer.model_max_length} tokens: {removed_text}"
        )
        text_input_ids = text_input_ids[:, : tokenizer.model_max_length]
    text_embeddings = clip_model.get_text_features(text_input_ids.to(clip_model.device))
    text_embeddings = text_embeddings / torch.linalg.norm(text_embeddings, dim=-1, keepdim=True)
    text_embeddings = text_embeddings[:, None, :]
    return text_embeddings[0][0].cpu().detach().numpy()


def map_img_to_model_feature(model, feature_extractor, imgs, device):
    for i, image in enumerate(imgs):
        if not image.mode == "RGB":
            imgs[i] = image.convert("RGB")
    imgs = normalize_images(imgs)
    retrieved_images = preprocess_images(imgs, feature_extractor).to(device)
    image_embeddings = model(retrieved_images)
    image_embeddings = image_embeddings / torch.linalg.norm(image_embeddings, dim=-1, keepdim=True)
    image_embeddings = image_embeddings[None, ...]
    return image_embeddings.cpu().detach().numpy()[0][0]


def get_dataset_with_emb_from_model(dataset, model, feature_extractor, image_column="image", index_name="embeddings"):
    return dataset.map(
        lambda example: {
            index_name: map_img_to_model_feature(model, feature_extractor, [example[image_column]], model.device)
        }
    )


def get_dataset_with_emb_from_clip_model(
    dataset, clip_model, feature_extractor, image_column="image", index_name="embeddings"
):
    return dataset.map(
        lambda example: {
            index_name: map_img_to_model_feature(
                clip_model.get_image_features, feature_extractor, [example[image_column]], clip_model.device
            )
        }
    )