Spaces:
Sleeping
Sleeping
File size: 8,745 Bytes
e84842d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import json
import os
import torch
import torch.distributed as dist
from itertools import chain
import lavis.common.dist_utils as dist_utils
from lavis.common.dist_utils import get_rank, get_world_size, is_main_process
from lavis.common.registry import registry
from lavis.common.vqa_tools.vqa_eval import VQAEval as VQATool
from lavis.tasks.vqa import VQATask
@registry.register_task("vqa_reading_comprehension")
class VQARCTask(VQATask):
def __init__(
self,
num_beams,
max_len,
min_len,
evaluate,
num_ans_candidates,
inference_method="rank",
**kwargs,
):
super().__init__(num_beams, max_len, min_len, evaluate, num_ans_candidates, inference_method)
self.config = kwargs.get('config')
@classmethod
def setup_task(cls, cfg):
run_cfg = cfg.run_cfg
num_beams = run_cfg.get("num_beams", 3)
max_len = run_cfg.get("max_len", 10)
min_len = run_cfg.get("min_len", 1)
evaluate = run_cfg.get("evaluate", False)
inference_method = run_cfg.get("inference_method", "rank")
num_ans_candidates = run_cfg.get("num_ans_candidates", 128)
return cls(
num_beams=num_beams,
max_len=max_len,
min_len=min_len,
evaluate=evaluate,
num_ans_candidates=num_ans_candidates,
inference_method=inference_method,
config=run_cfg,
)
def valid_step(self, model, samples):
answers, captions, gradcams = model.predict_answers(
samples=samples,
inference_method=self.inference_method,
num_beams=self.num_beams,
max_len=self.max_len,
min_len=self.min_len,
internal_bsz_fid=self.config['internal_bsz_fid'],
num_captions=self.config['num_captions'],
num_captions_fid=self.config['num_captions_fid'],
cap_max_length=self.config['cap_max_length'],
cap_min_length=self.config['cap_min_length'],
top_k=self.config['top_k'],
top_p=self.config['top_p'],
repetition_penalty=self.config['repetition_penalty'],
num_patches=self.config['num_patches'],
block_num=self.config['block_num'],
)
pred_qa_pairs = []
sample_captions = []
sample_gradcams = []
question_id = samples["question_id"]
for answer, caption, gradcam, ques_id in zip(answers, captions, gradcams, question_id):
ques_id = int(ques_id.item())
pred_qa_pairs.append({"question_id": ques_id, "answer": answer})
sample_captions.append({"question_id": ques_id, "caption": caption})
sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam})
return [sample_gradcams, sample_captions, pred_qa_pairs]
def after_evaluation(self, val_result, split_name, **kwargs):
result_ = list(chain(*val_result[0::3]))
result_file = self.save_gradcam(
result_,
result_dir=registry.get_path("result_dir"),
filename=f"{split_name}_gradcam_result",
remove_duplicate="question_id",
)
result_ = list(chain(*val_result[1::3]))
result_file = self.save_result(
result_,
result_dir=registry.get_path("result_dir"),
filename=f"{split_name}_caption_result",
remove_duplicate="question_id",
)
result_ = list(chain(*val_result[2::3]))
result_file = self.save_result(
result_,
result_dir=registry.get_path("result_dir"),
filename=f"{split_name}_vqa_result",
remove_duplicate="question_id",
)
metrics = self._report_metrics(result_file=result_file, split=split_name)
return metrics
def save_gradcam(self, result, result_dir, filename, remove_duplicate=""):
result_file = os.path.join(result_dir, '%s_rank%d.pth' % (filename, get_rank()))
final_result_file = os.path.join(result_dir, '%s.pth' % filename)
torch.save({'result': result}, result_file)
dist.barrier()
if is_main_process():
logging.warning("rank %d starts merging results." % get_rank())
# combine results from all processes
result = []
for rank in range(get_world_size()):
result_file = os.path.join(result_dir, '%s_rank%d.pth' % (filename, rank))
res_ckpt = torch.load(result_file, map_location='cpu')
res = res_ckpt['result']
result += res
if remove_duplicate:
result_new = []
id_list = []
for res in result:
if res[remove_duplicate] not in id_list:
id_list.append(res[remove_duplicate])
result_new.append(res)
result = result_new
torch.save({'result': result}, final_result_file)
print("result file saved to %s" % final_result_file)
return final_result_file
@registry.register_task("gqa_reading_comprehension")
class GQARCTask(VQARCTask):
def valid_step(self, model, samples):
answers, captions, gradcams = model.predict_answers(
samples=samples,
inference_method=self.inference_method,
num_beams=self.num_beams,
max_len=self.max_len,
min_len=self.min_len,
internal_bsz_fid=self.config['internal_bsz_fid'],
num_captions=self.config['num_captions'],
num_captions_fid=self.config['num_captions_fid'],
cap_max_length=self.config['cap_max_length'],
cap_min_length=self.config['cap_min_length'],
top_k=self.config['top_k'],
top_p=self.config['top_p'],
repetition_penalty=self.config['repetition_penalty'],
num_patches=self.config['num_patches'],
block_num=self.config['block_num'],
)
pred_qa_pairs = []
sample_captions = []
sample_gradcams = []
question_id = samples["question_id"]
gt_answers = samples["answer"]
for pred_answer, caption, gradcam, ques_id, gt_answer in zip(answers, captions, gradcams, question_id, gt_answers):
ques_id = int(ques_id.item())
pred_qa_pairs.append({"question_id": ques_id, "pred_ans": pred_answer, "gt_ans": gt_answer})
sample_captions.append({"question_id": ques_id, "caption": caption})
sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam})
return [sample_gradcams, sample_captions, pred_qa_pairs]
@dist_utils.main_process
def _report_metrics(self, result_file, split):
"""
TODO: add other evaluation metrics for GQA
"""
results = json.load(open(result_file, "r"))
acc = []
vqa_tool = VQATool()
for res in results:
if res["gt_ans"] is None:
# prepare test results for leaderboard evaluation
self._save_result_leaderboard(results)
return
gt_ans = res["gt_ans"]
pred = res["pred_ans"]
if self.inference_method == "generate":
pred = vqa_tool.processPunctuation(pred)
pred = vqa_tool.processDigitArticle(pred)
vqa_acc = 1 if pred == gt_ans else 0
acc.append(vqa_acc)
accuracy = sum(acc) / len(acc) * 100
metrics = {"agg_metrics": accuracy, "acc": accuracy}
with open(
os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a"
) as f:
f.write(json.dumps(metrics) + "\n")
logging.info(metrics)
return metrics
@dist_utils.main_process
def _save_result_leaderboard(self, results):
"""
Saving the results in the format required for leaderboard evaluation.
"""
result_leaderboard = []
for res in results:
result_leaderboard.append({
"questionId": str(res['question_id']),
"prediction": str(res["pred_ans"]),
})
result_file = registry.get_path("result_dir") + "_leaderboard.json"
with open(result_file, "w") as f:
json.dump(result_leaderboard, f)
logging.info(f"Saved results for leaderboard evaluation at {result_file}")
|