File size: 26,419 Bytes
9ad0f0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
"""
This model is based on OpenAI's UNet from improved diffusion, with modifications to support a MEL conditioning signal
and an audio conditioning input. It has also been simplified somewhat.
Credit: https://github.com/openai/improved-diffusion
"""
import functools
import math
from abc import abstractmethod

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import autocast
from torch.nn import Linear
from torch.utils.checkpoint import checkpoint
from x_transformers import ContinuousTransformerWrapper, Encoder

from models.arch_util import normalization, zero_module, Downsample, Upsample, AudioMiniEncoder, AttentionBlock


def is_latent(t):
    return t.dtype == torch.float


def is_sequence(t):
    return t.dtype == torch.long


def ceil_multiple(base, multiple):
    res = base % multiple
    if res == 0:
        return base
    return base + (multiple - res)


def timestep_embedding(timesteps, dim, max_period=10000):
    """
    Create sinusoidal timestep embeddings.

    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an [N x dim] Tensor of positional embeddings.
    """
    half = dim // 2
    freqs = torch.exp(
        -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
    ).to(device=timesteps.device)
    args = timesteps[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    return embedding


class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
    A sequential module that passes timestep embeddings to the children that
    support it as an extra input.
    """

    def forward(self, x, emb):
        for layer in self:
            if isinstance(layer, TimestepBlock):
                x = layer(x, emb)
            else:
                x = layer(x)
        return x


class ResBlock(TimestepBlock):
    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        kernel_size=3,
        efficient_config=True,
        use_scale_shift_norm=False,
    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_scale_shift_norm = use_scale_shift_norm
        padding = {1: 0, 3: 1, 5: 2}[kernel_size]
        eff_kernel = 1 if efficient_config else 3
        eff_padding = 0 if efficient_config else 1

        self.in_layers = nn.Sequential(
            normalization(channels),
            nn.SiLU(),
            nn.Conv1d(channels, self.out_channels, eff_kernel, padding=eff_padding),
        )

        self.emb_layers = nn.Sequential(
            nn.SiLU(),
            Linear(
                emb_channels,
                2 * self.out_channels if use_scale_shift_norm else self.out_channels,
            ),
        )
        self.out_layers = nn.Sequential(
            normalization(self.out_channels),
            nn.SiLU(),
            nn.Dropout(p=dropout),
            zero_module(
                nn.Conv1d(self.out_channels, self.out_channels, kernel_size, padding=padding)
            ),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        else:
            self.skip_connection = nn.Conv1d(channels, self.out_channels, eff_kernel, padding=eff_padding)

    def forward(self, x, emb):
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.

        :param x: an [N x C x ...] Tensor of features.
        :param emb: an [N x emb_channels] Tensor of timestep embeddings.
        :return: an [N x C x ...] Tensor of outputs.
        """
        return checkpoint(
            self._forward, x, emb
        )

    def _forward(self, x, emb):
        h = self.in_layers(x)
        emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = torch.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h


class CheckpointedLayer(nn.Module):
    """
    Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses
    checkpoint for all other args.
    """
    def __init__(self, wrap):
        super().__init__()
        self.wrap = wrap

    def forward(self, x, *args, **kwargs):
        for k, v in kwargs.items():
            assert not (isinstance(v, torch.Tensor) and v.requires_grad)  # This would screw up checkpointing.
        partial = functools.partial(self.wrap, **kwargs)
        return torch.utils.checkpoint.checkpoint(partial, x, *args)


class CheckpointedXTransformerEncoder(nn.Module):
    """
    Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
    to channels-last that XTransformer expects.
    """
    def __init__(self, needs_permute=True, **xtransformer_kwargs):
        super().__init__()
        self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs)
        self.needs_permute = needs_permute

        for i in range(len(self.transformer.attn_layers.layers)):
            n, b, r = self.transformer.attn_layers.layers[i]
            self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])

    def forward(self, x, **kwargs):
        if self.needs_permute:
            x = x.permute(0,2,1)
        h = self.transformer(x, **kwargs)
        return h.permute(0,2,1)


class DiffusionTts(nn.Module):
    """
    The full UNet model with attention and timestep embedding.

    Customized to be conditioned on an aligned prior derived from a autoregressive
    GPT-style model.

    :param in_channels: channels in the input Tensor.
    :param in_latent_channels: channels from the input latent.
    :param model_channels: base channel count for the model.
    :param out_channels: channels in the output Tensor.
    :param num_res_blocks: number of residual blocks per downsample.
    :param attention_resolutions: a collection of downsample rates at which
        attention will take place. May be a set, list, or tuple.
        For example, if this contains 4, then at 4x downsampling, attention
        will be used.
    :param dropout: the dropout probability.
    :param channel_mult: channel multiplier for each level of the UNet.
    :param conv_resample: if True, use learned convolutions for upsampling and
        downsampling.
    :param num_heads: the number of attention heads in each attention layer.
    :param num_heads_channels: if specified, ignore num_heads and instead use
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
    :param resblock_updown: use residual blocks for up/downsampling.
    :param use_new_attention_order: use a different attention pattern for potentially
                                    increased efficiency.
    """

    def __init__(
            self,
            model_channels,
            in_channels=1,
            in_latent_channels=1024,
            in_tokens=8193,
            conditioning_dim_factor=8,
            conditioning_expansion=4,
            out_channels=2,  # mean and variance
            dropout=0,
            # res           1, 2, 4, 8,16,32,64,128,256,512, 1K, 2K
            channel_mult=  (1,1.5,2, 3, 4, 6, 8, 12, 16, 24, 32, 48),
            num_res_blocks=(1, 1, 1, 1, 1, 2, 2, 2,   2,  2,  2,  2),
            # spec_cond:    1, 0, 0, 1, 0, 0, 1, 0,   0,  1,  0,  0)
            # attn:         0, 0, 0, 0, 0, 0, 0, 0,   0,  1,  1,  1
            token_conditioning_resolutions=(1,16,),
            attention_resolutions=(512,1024,2048),
            conv_resample=True,
            use_fp16=False,
            num_heads=1,
            num_head_channels=-1,
            num_heads_upsample=-1,
            kernel_size=3,
            scale_factor=2,
            time_embed_dim_multiplier=4,
            freeze_main_net=False,
            efficient_convs=True,  # Uses kernels with width of 1 in several places rather than 3.
            use_scale_shift_norm=True,
            # Parameters for regularization.
            unconditioned_percentage=.1,  # This implements a mechanism similar to what is used in classifier-free training.
            # Parameters for super-sampling.
            super_sampling=False,
            super_sampling_max_noising_factor=.1,
    ):
        super().__init__()

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if super_sampling:
            in_channels *= 2  # In super-sampling mode, the LR input is concatenated directly onto the input.
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.super_sampling_enabled = super_sampling
        self.super_sampling_max_noising_factor = super_sampling_max_noising_factor
        self.unconditioned_percentage = unconditioned_percentage
        self.enable_fp16 = use_fp16
        self.alignment_size = 2 ** (len(channel_mult)+1)
        self.freeze_main_net = freeze_main_net
        padding = 1 if kernel_size == 3 else 2
        down_kernel = 1 if efficient_convs else 3

        time_embed_dim = model_channels * time_embed_dim_multiplier
        self.time_embed = nn.Sequential(
            Linear(model_channels, time_embed_dim),
            nn.SiLU(),
            Linear(time_embed_dim, time_embed_dim),
        )

        conditioning_dim = model_channels * conditioning_dim_factor
        # Either code_converter or latent_converter is used, depending on what type of conditioning data is fed.
        # This model is meant to be able to be trained on both for efficiency purposes - it is far less computationally
        # complex to generate tokens, while generating latents will normally mean propagating through a deep autoregressive
        # transformer network.
        self.code_converter = nn.Sequential(
            nn.Embedding(in_tokens, conditioning_dim),
            CheckpointedXTransformerEncoder(
                needs_permute=False,
                max_seq_len=-1,
                use_pos_emb=False,
                attn_layers=Encoder(
                    dim=conditioning_dim,
                    depth=3,
                    heads=num_heads,
                    ff_dropout=dropout,
                    attn_dropout=dropout,
                    use_rmsnorm=True,
                    ff_glu=True,
                    rotary_emb_dim=True,
                )
            ))
        self.latent_converter = nn.Conv1d(in_latent_channels, conditioning_dim, 1)
        self.aligned_latent_padding_embedding = nn.Parameter(torch.randn(1,in_latent_channels,1))
        if in_channels > 60:  # It's a spectrogram.
            self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,conditioning_dim,3,padding=1,stride=2),
                                                     CheckpointedXTransformerEncoder(
                                                         needs_permute=True,
                                                         max_seq_len=-1,
                                                         use_pos_emb=False,
                                                         attn_layers=Encoder(
                                                             dim=conditioning_dim,
                                                             depth=4,
                                                             heads=num_heads,
                                                             ff_dropout=dropout,
                                                             attn_dropout=dropout,
                                                             use_rmsnorm=True,
                                                             ff_glu=True,
                                                             rotary_emb_dim=True,
                                                         )
                                                     ))
        else:
            self.contextual_embedder = AudioMiniEncoder(1, conditioning_dim, base_channels=32, depth=6, resnet_blocks=1,
                                                        attn_blocks=3, num_attn_heads=8, dropout=dropout, downsample_factor=4, kernel_size=5)
        self.conditioning_conv = nn.Conv1d(conditioning_dim*2, conditioning_dim, 1)
        self.unconditioned_embedding = nn.Parameter(torch.randn(1,conditioning_dim,1))
        self.conditioning_timestep_integrator = TimestepEmbedSequential(
                    ResBlock(conditioning_dim, time_embed_dim, dropout, out_channels=conditioning_dim, kernel_size=1, use_scale_shift_norm=use_scale_shift_norm),
                    AttentionBlock(conditioning_dim, num_heads=num_heads, num_head_channels=num_head_channels),
                    ResBlock(conditioning_dim, time_embed_dim, dropout, out_channels=conditioning_dim, kernel_size=1, use_scale_shift_norm=use_scale_shift_norm),
                    AttentionBlock(conditioning_dim, num_heads=num_heads, num_head_channels=num_head_channels),
                    ResBlock(conditioning_dim, time_embed_dim, dropout, out_channels=conditioning_dim, kernel_size=1, use_scale_shift_norm=use_scale_shift_norm),
        )
        self.conditioning_expansion = conditioning_expansion

        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
                    nn.Conv1d(in_channels, model_channels, kernel_size, padding=padding)
                )
            ]
        )
        token_conditioning_blocks = []
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1

        for level, (mult, num_blocks) in enumerate(zip(channel_mult, num_res_blocks)):
            if ds in token_conditioning_resolutions:
                token_conditioning_block = nn.Conv1d(conditioning_dim, ch, 1)
                token_conditioning_block.weight.data *= .02
                self.input_blocks.append(token_conditioning_block)
                token_conditioning_blocks.append(token_conditioning_block)

            for _ in range(num_blocks):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=int(mult * model_channels),
                        kernel_size=kernel_size,
                        efficient_config=efficient_convs,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = int(mult * model_channels)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            num_heads=num_heads,
                            num_head_channels=num_head_channels,
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        Downsample(
                            ch, conv_resample, out_channels=out_ch, factor=scale_factor, ksize=down_kernel, pad=0 if down_kernel == 1 else 1
                        )
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        self.middle_block = TimestepEmbedSequential(
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                kernel_size=kernel_size,
                efficient_config=efficient_convs,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
            AttentionBlock(
                ch,
                num_heads=num_heads,
                num_head_channels=num_head_channels,
            ),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                kernel_size=kernel_size,
                efficient_config=efficient_convs,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, (mult, num_blocks) in list(enumerate(zip(channel_mult, num_res_blocks)))[::-1]:
            for i in range(num_blocks + 1):
                ich = input_block_chans.pop()
                layers = [
                    ResBlock(
                        ch + ich,
                        time_embed_dim,
                        dropout,
                        out_channels=int(model_channels * mult),
                        kernel_size=kernel_size,
                        efficient_config=efficient_convs,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = int(model_channels * mult)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            num_heads=num_heads_upsample,
                            num_head_channels=num_head_channels,
                        )
                    )
                if level and i == num_blocks:
                    out_ch = ch
                    layers.append(
                        Upsample(ch, conv_resample, out_channels=out_ch, factor=scale_factor)
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
            normalization(ch),
            nn.SiLU(),
            zero_module(nn.Conv1d(model_channels, out_channels, kernel_size, padding=padding)),
        )

    def fix_alignment(self, x, aligned_conditioning):
        """
        The UNet requires that the input <x> is a certain multiple of 2, defined by the UNet depth. Enforce this by
        padding both <x> and <aligned_conditioning> before forward propagation and removing the padding before returning.
        """
        cm = ceil_multiple(x.shape[-1], self.alignment_size)
        if cm != 0:
            pc = (cm-x.shape[-1])/x.shape[-1]
            x = F.pad(x, (0,cm-x.shape[-1]))
            # Also fix aligned_latent, which is aligned to x.
            if is_latent(aligned_conditioning):
                aligned_conditioning = torch.cat([aligned_conditioning,
                                                  self.aligned_latent_padding_embedding.repeat(x.shape[0], 1, int(pc * aligned_conditioning.shape[-1]))], dim=-1)
            else:
                aligned_conditioning = F.pad(aligned_conditioning, (0, int(pc*aligned_conditioning.shape[-1])))
        return x, aligned_conditioning

    def forward(self, x, timesteps, aligned_conditioning, conditioning_input, lr_input=None, conditioning_free=False):
        """
        Apply the model to an input batch.

        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced.
        :param conditioning_input: a full-resolution audio clip that is used as a reference to the style you want decoded.
        :param lr_input: for super-sampling models, a guidance audio clip at a lower sampling rate.
        :param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
        :return: an [N x C x ...] Tensor of outputs.
        """
        assert conditioning_input is not None
        if self.super_sampling_enabled:
            assert lr_input is not None
            if self.training and self.super_sampling_max_noising_factor > 0:
                noising_factor = random.uniform(0,self.super_sampling_max_noising_factor)
                lr_input = torch.randn_like(lr_input) * noising_factor + lr_input
            lr_input = F.interpolate(lr_input, size=(x.shape[-1],), mode='nearest')
            x = torch.cat([x, lr_input], dim=1)

        # Shuffle aligned_latent to BxCxS format
        if is_latent(aligned_conditioning):
            aligned_conditioning = aligned_conditioning.permute(0, 2, 1)

        # Fix input size to the proper multiple of 2 so we don't get alignment errors going down and back up the U-net.
        orig_x_shape = x.shape[-1]
        x, aligned_conditioning = self.fix_alignment(x, aligned_conditioning)

        with autocast(x.device.type, enabled=self.enable_fp16):
            hs = []
            time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))

            # Note: this block does not need to repeated on inference, since it is not timestep-dependent.
            if conditioning_free:
                code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, 1)
            else:
                cond_emb = self.contextual_embedder(conditioning_input)
                if len(cond_emb.shape) == 3:  # Just take the first element.
                    cond_emb = cond_emb[:, :, 0]
                if is_latent(aligned_conditioning):
                    code_emb = self.latent_converter(aligned_conditioning)
                else:
                    code_emb = self.code_converter(aligned_conditioning)
                cond_emb = cond_emb.unsqueeze(-1).repeat(1, 1, code_emb.shape[-1])
                code_emb = self.conditioning_conv(torch.cat([cond_emb, code_emb], dim=1))
            # Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
            if self.training and self.unconditioned_percentage > 0:
                unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
                                                   device=code_emb.device) < self.unconditioned_percentage
                code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(x.shape[0], 1, 1),
                                       code_emb)

            # Everything after this comment is timestep dependent.
            code_emb = torch.repeat_interleave(code_emb, self.conditioning_expansion, dim=-1)
            code_emb = self.conditioning_timestep_integrator(code_emb, time_emb)

            first = True
            time_emb = time_emb.float()
            h = x
            for k, module in enumerate(self.input_blocks):
                if isinstance(module, nn.Conv1d):
                    h_tok = F.interpolate(module(code_emb), size=(h.shape[-1]), mode='nearest')
                    h = h + h_tok
                else:
                    with autocast(x.device.type, enabled=self.enable_fp16 and not first):
                        # First block has autocast disabled to allow a high precision signal to be properly vectorized.
                        h = module(h, time_emb)
                    hs.append(h)
                first = False
            h = self.middle_block(h, time_emb)
            for module in self.output_blocks:
                h = torch.cat([h, hs.pop()], dim=1)
                h = module(h, time_emb)

        # Last block also has autocast disabled for high-precision outputs.
        h = h.float()
        out = self.out(h)

        # Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
        extraneous_addition = 0
        params = [self.aligned_latent_padding_embedding, self.unconditioned_embedding] + list(self.latent_converter.parameters())
        for p in params:
            extraneous_addition = extraneous_addition + p.mean()
        out = out + extraneous_addition * 0

        return out[:, :, :orig_x_shape]


if __name__ == '__main__':
    clip = torch.randn(2, 1, 32868)
    aligned_latent = torch.randn(2,388,1024)
    aligned_sequence = torch.randint(0,8192,(2,388))
    cond = torch.randn(2, 1, 44000)
    ts = torch.LongTensor([600, 600])
    model = DiffusionTts(128,
                         channel_mult=[1,1.5,2, 3, 4, 6, 8],
                         num_res_blocks=[2, 2, 2, 2, 2, 2, 1],
                         token_conditioning_resolutions=[1,4,16,64],
                         attention_resolutions=[],
                         num_heads=8,
                         kernel_size=3,
                         scale_factor=2,
                         time_embed_dim_multiplier=4,
                         super_sampling=False,
                         efficient_convs=False)
    # Test with latent aligned conditioning
    o = model(clip, ts, aligned_latent, cond)
    # Test with sequence aligned conditioning
    o = model(clip, ts, aligned_sequence, cond)