File size: 10,078 Bytes
56b10cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "tortoise-tts.ipynb",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "JrK20I32grP6"
},
"outputs": [],
"source": [
"!git clone https://github.com/neonbjb/tortoise-tts.git\n",
"%cd tortoise-tts\n",
"!pip install -r requirements.txt"
]
},
{
"cell_type": "code",
"source": [
"# Imports used through the rest of the notebook.\n",
"import torch\n",
"import torchaudio\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"from tqdm import tqdm\n",
"\n",
"from utils.tokenizer import VoiceBpeTokenizer\n",
"from models.discrete_diffusion_vocoder import DiscreteDiffusionVocoder\n",
"from models.text_voice_clip import VoiceCLIP\n",
"from models.dvae import DiscreteVAE\n",
"from models.autoregressive import UnifiedVoice\n",
"\n",
"# These have some fairly interesting code that is hidden in the colab. Consider checking it out.\n",
"from do_tts import download_models, load_discrete_vocoder_diffuser, load_conditioning, fix_autoregressive_output, do_spectrogram_diffusion"
],
"metadata": {
"id": "Gen09NM4hONQ"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Download pretrained models and set up pretrained voice bank. Feel free to upload and add your own voices here.\n",
"# To do so, upload two WAV files cropped to 5-10 seconds of someone speaking.\n",
"download_models()\n",
"preselected_cond_voices = {\n",
" # Male voices\n",
" 'dotrice': ['voices/dotrice/1.wav', 'voices/dotrice/2.wav'],\n",
" 'harris': ['voices/harris/1.wav', 'voices/harris/2.wav'],\n",
" 'lescault': ['voices/lescault/1.wav', 'voices/lescault/2.wav'],\n",
" 'otto': ['voices/otto/1.wav', 'voices/otto/2.wav'],\n",
" # Female voices\n",
" 'atkins': ['voices/atkins/1.wav', 'voices/atkins/2.wav'],\n",
" 'grace': ['voices/grace/1.wav', 'voices/grace/2.wav'],\n",
" 'kennard': ['voices/kennard/1.wav', 'voices/kennard/2.wav'],\n",
" 'mol': ['voices/mol/1.wav', 'voices/mol/2.wav'],\n",
" }"
],
"metadata": {
"id": "SSleVnRAiEE2"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# This is the text that will be spoken.\n",
"text = \"And took the other as just as fair, and having perhaps the better claim, because it was grassy and wanted wear.\"\n",
"# This is the voice that will speak it.\n",
"voice = 'atkins'\n",
"# This is the number of samples we will generate from the DALLE-style model. More will produce better results, but will take longer to produce.\n",
"# I don't recommend going less than 128.\n",
"num_autoregressive_samples = 128"
],
"metadata": {
"id": "bt_aoxONjfL2"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Prepare data.\n",
"tokenizer = VoiceBpeTokenizer()\n",
"text = torch.IntTensor(tokenizer.encode(text)).unsqueeze(0).cuda()\n",
"text = F.pad(text, (0,1)) # This may not be necessary.\n",
"cond_paths = preselected_cond_voices[voice]\n",
"conds = []\n",
"for cond_path in cond_paths:\n",
" c, cond_wav = load_conditioning(cond_path)\n",
" conds.append(c)\n",
"conds = torch.stack(conds, dim=1) # And just use the last cond_wav for the diffusion model."
],
"metadata": {
"id": "KEXOKjIvn6NW"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Load the autoregressive model.\n",
"autoregressive = UnifiedVoice(max_mel_tokens=300, max_text_tokens=200, max_conditioning_inputs=2, layers=30, model_dim=1024,\n",
" heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False, train_solo_embeddings=False).cuda().eval()\n",
"autoregressive.load_state_dict(torch.load('.models/autoregressive.pth'))\n",
"stop_mel_token = autoregressive.stop_mel_token"
],
"metadata": {
"id": "Z15xFT_uhP8v"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Perform inference with the autoregressive model, generating num_autoregressive_samples\n",
"with torch.no_grad():\n",
" samples = []\n",
" for b in tqdm(range(num_autoregressive_samples // 16)):\n",
" codes = autoregressive.inference_speech(conds, text, num_beams=1, repetition_penalty=1.0, do_sample=True, top_k=50, top_p=.95,\n",
" temperature=.9, num_return_sequences=16, length_penalty=1)\n",
" padding_needed = 250 - codes.shape[1]\n",
" codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)\n",
" samples.append(codes)\n",
"\n",
"# Delete model weights to conserve memory.\n",
"del autoregressive"
],
"metadata": {
"id": "xajqWiEik-j0"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Load the CLIP model.\n",
"clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=8, text_seq_len=120, text_heads=8,\n",
" num_speech_tokens=8192, speech_enc_depth=10, speech_heads=8, speech_seq_len=250).cuda().eval()\n",
"clip.load_state_dict(torch.load('.models/clip.pth'))"
],
"metadata": {
"id": "KNgYSyuyliMs"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Use the CLIP model to select the best autoregressive output to match the given text.\n",
"clip_results = []\n",
"with torch.no_grad():\n",
" for batch in samples:\n",
" for i in range(batch.shape[0]):\n",
" batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)\n",
" text = text[:, :120] # Ugly hack to fix the fact that I didn't train CLIP to handle long enough text.\n",
" clip_results.append(clip(text.repeat(batch.shape[0], 1),\n",
" torch.full((batch.shape[0],), fill_value=text.shape[1]-1, dtype=torch.long, device='cuda'),\n",
" batch, torch.full((batch.shape[0],), fill_value=batch.shape[1]*1024, dtype=torch.long, device='cuda'),\n",
" return_loss=False))\n",
" clip_results = torch.cat(clip_results, dim=0)\n",
" samples = torch.cat(samples, dim=0)\n",
" best_results = samples[torch.topk(clip_results, k=1).indices]\n",
"\n",
"# Save samples to CPU memory, delete clip to conserve memory.\n",
"samples = samples.cpu()\n",
"del clip"
],
"metadata": {
"id": "DDXkM0lclp4U"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Load the DVAE and diffusion model.\n",
"dvae = DiscreteVAE(positional_dims=1, channels=80, hidden_dim=512, num_resnet_blocks=3, codebook_dim=512, num_tokens=8192, num_layers=2,\n",
" record_codes=True, kernel_size=3, use_transposed_convs=False).cuda().eval()\n",
"dvae.load_state_dict(torch.load('.models/dvae.pth'), strict=False)\n",
"diffusion = DiscreteDiffusionVocoder(model_channels=128, dvae_dim=80, channel_mult=[1, 1, 1.5, 2, 3, 4, 6, 8, 8, 8, 8], num_res_blocks=[1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1],\n",
" spectrogram_conditioning_resolutions=[2,512], attention_resolutions=[512,1024], num_heads=4, kernel_size=3, scale_factor=2,\n",
" conditioning_inputs_provided=True, time_embed_dim_multiplier=4).cuda().eval()\n",
"diffusion.load_state_dict(torch.load('.models/diffusion.pth'))\n",
"diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=100)"
],
"metadata": {
"id": "97acSnBal8Q2"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Decode the (best) discrete sequence created by the autoregressive model.\n",
"with torch.no_grad():\n",
" for b in range(best_results.shape[0]):\n",
" code = best_results[b].unsqueeze(0)\n",
" wav = do_spectrogram_diffusion(diffusion, dvae, diffuser, code, cond_wav, spectrogram_compression_factor=256, mean=True)\n",
" torchaudio.save(f'{voice}_{b}.wav', wav.squeeze(0).cpu(), 22050)"
],
"metadata": {
"id": "HEDABTrdl_kM"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Listen to your text! (told you that'd take a long time..)\n",
"from IPython.display import Audio\n",
"Audio(data=wav.squeeze(0).cpu().numpy(), rate=22050)"
],
"metadata": {
"id": "EyHmcdqBmSvf"
},
"execution_count": null,
"outputs": []
}
]
} |