File size: 18,033 Bytes
5a958b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
"""
This model is based on OpenAI's UNet from improved diffusion, with modifications to support a MEL conditioning signal
and an audio conditioning input. It has also been simplified somewhat.
Credit: https://github.com/openai/improved-diffusion
"""


import math
from abc import abstractmethod

import torch
import torch.nn as nn

from models.arch_util import normalization, zero_module, Downsample, Upsample, AudioMiniEncoder, AttentionBlock


def timestep_embedding(timesteps, dim, max_period=10000):
    """
    Create sinusoidal timestep embeddings.

    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an [N x dim] Tensor of positional embeddings.
    """
    half = dim // 2
    freqs = torch.exp(
        -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
    ).to(device=timesteps.device)
    args = timesteps[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    return embedding


class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
    A sequential module that passes timestep embeddings to the children that
    support it as an extra input.
    """

    def forward(self, x, emb):
        for layer in self:
            if isinstance(layer, TimestepBlock):
                x = layer(x, emb)
            else:
                x = layer(x)
        return x


class TimestepResBlock(TimestepBlock):
    """
    A residual block that can optionally change the number of channels.

    :param channels: the number of input channels.
    :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout.
    :param out_channels: if specified, the number of out channels.
    :param use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the
        channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param up: if True, use this block for upsampling.
    :param down: if True, use this block for downsampling.
    """

    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        use_conv=False,
        use_scale_shift_norm=False,
        up=False,
        down=False,
        kernel_size=3,
    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_scale_shift_norm = use_scale_shift_norm
        padding = 1 if kernel_size == 3 else (2 if kernel_size == 5 else 0)

        self.in_layers = nn.Sequential(
            normalization(channels),
            nn.SiLU(),
            nn.Conv1d(channels, self.out_channels, kernel_size, padding=padding),
        )

        self.updown = up or down

        if up:
            self.h_upd = Upsample(channels, False, dims)
            self.x_upd = Upsample(channels, False, dims)
        elif down:
            self.h_upd = Downsample(channels, False, dims)
            self.x_upd = Downsample(channels, False, dims)
        else:
            self.h_upd = self.x_upd = nn.Identity()

        self.emb_layers = nn.Sequential(
            nn.SiLU(),
            nn.Linear(
                emb_channels,
                2 * self.out_channels if use_scale_shift_norm else self.out_channels,
            ),
        )
        self.out_layers = nn.Sequential(
            normalization(self.out_channels),
            nn.SiLU(),
            nn.Dropout(p=dropout),
            zero_module(
                nn.Conv1d(self.out_channels, self.out_channels, kernel_size, padding=padding)
            ),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
            self.skip_connection = nn.Conv1d(
                channels, self.out_channels, kernel_size, padding=padding
            )
        else:
            self.skip_connection = nn.Conv1d(channels, self.out_channels, 1)

    def forward(self, x, emb):
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)
        emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = torch.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h


class DiscreteSpectrogramConditioningBlock(nn.Module):
    def __init__(self, dvae_channels, channels, level):
        super().__init__()
        self.intg = nn.Sequential(nn.Conv1d(dvae_channels, channels, kernel_size=1),
                                  normalization(channels),
                                  nn.SiLU(),
                                  nn.Conv1d(channels, channels, kernel_size=3))
        self.level = level

    """
    Embeds the given codes and concatenates them onto x. Return shape is the same as x.shape.
    
    :param x: bxcxS waveform latent
    :param codes: bxN discrete codes, N <= S
    """
    def forward(self, x, dvae_in):
        b, c, S = x.shape
        _, q, N = dvae_in.shape
        emb = self.intg(dvae_in)
        emb = nn.functional.interpolate(emb, size=(S,), mode='nearest')
        return torch.cat([x, emb], dim=1)


class DiscreteDiffusionVocoder(nn.Module):
    """
    The full UNet model with attention and timestep embedding.

    Customized to be conditioned on a spectrogram prior.

    :param in_channels: channels in the input Tensor.
    :param spectrogram_channels: channels in the conditioning spectrogram.
    :param model_channels: base channel count for the model.
    :param out_channels: channels in the output Tensor.
    :param num_res_blocks: number of residual blocks per downsample.
    :param attention_resolutions: a collection of downsample rates at which
        attention will take place. May be a set, list, or tuple.
        For example, if this contains 4, then at 4x downsampling, attention
        will be used.
    :param dropout: the dropout probability.
    :param channel_mult: channel multiplier for each level of the UNet.
    :param conv_resample: if True, use learned convolutions for upsampling and
        downsampling.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param num_heads: the number of attention heads in each attention layer.
    :param num_heads_channels: if specified, ignore num_heads and instead use
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
    :param resblock_updown: use residual blocks for up/downsampling.
    :param use_new_attention_order: use a different attention pattern for potentially
                                    increased efficiency.
    """

    def __init__(
            self,
            model_channels,
            in_channels=1,
            out_channels=2,  # mean and variance
            dvae_dim=512,
            dropout=0,
            # res           1, 2, 4, 8,16,32,64,128,256,512, 1K, 2K
            channel_mult=  (1,1.5,2, 3, 4, 6, 8, 12, 16, 24, 32, 48),
            num_res_blocks=(1, 1, 1, 1, 1, 2, 2, 2,   2,  2,  2,  2),
            # spec_cond:    1, 0, 0, 1, 0, 0, 1, 0,   0,  1,  0,  0)
            # attn:         0, 0, 0, 0, 0, 0, 0, 0,   0,  1,  1,  1
            spectrogram_conditioning_resolutions=(512,),
            attention_resolutions=(512,1024,2048),
            conv_resample=True,
            dims=1,
            use_fp16=False,
            num_heads=1,
            num_head_channels=-1,
            num_heads_upsample=-1,
            use_scale_shift_norm=False,
            resblock_updown=False,
            kernel_size=3,
            scale_factor=2,
            conditioning_inputs_provided=True,
            time_embed_dim_multiplier=4,
    ):
        super().__init__()

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.dtype = torch.float16 if use_fp16 else torch.float32
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.dims = dims

        padding = 1 if kernel_size == 3 else 2

        time_embed_dim = model_channels * time_embed_dim_multiplier
        self.time_embed = nn.Sequential(
            nn.Linear(model_channels, time_embed_dim),
            nn.SiLU(),
            nn.Linear(time_embed_dim, time_embed_dim),
        )

        self.conditioning_enabled = conditioning_inputs_provided
        if conditioning_inputs_provided:
            self.contextual_embedder = AudioMiniEncoder(in_channels, time_embed_dim, base_channels=32, depth=6, resnet_blocks=1,
                             attn_blocks=2, num_attn_heads=2, dropout=dropout, downsample_factor=4, kernel_size=5)

        seqlyr = TimestepEmbedSequential(
            nn.Conv1d(in_channels, model_channels, kernel_size, padding=padding)
        )
        seqlyr.level = 0
        self.input_blocks = nn.ModuleList([seqlyr])
        spectrogram_blocks = []
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1

        for level, (mult, num_blocks) in enumerate(zip(channel_mult, num_res_blocks)):
            if ds in spectrogram_conditioning_resolutions:
                spec_cond_block = DiscreteSpectrogramConditioningBlock(dvae_dim, ch, 2 ** level)
                self.input_blocks.append(spec_cond_block)
                spectrogram_blocks.append(spec_cond_block)
                ch *= 2

            for _ in range(num_blocks):
                layers = [
                    TimestepResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=int(mult * model_channels),
                        use_scale_shift_norm=use_scale_shift_norm,
                        kernel_size=kernel_size,
                    )
                ]
                ch = int(mult * model_channels)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            num_heads=num_heads,
                            num_head_channels=num_head_channels,
                        )
                    )
                layer = TimestepEmbedSequential(*layers)
                layer.level = 2 ** level
                self.input_blocks.append(layer)
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                upblk = TimestepEmbedSequential(
                        TimestepResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
                            kernel_size=kernel_size,
                        )
                        if resblock_updown
                        else Downsample(
                            ch, conv_resample, out_channels=out_ch, factor=scale_factor
                        )
                    )
                upblk.level = 2 ** level
                self.input_blocks.append(upblk)
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        self.middle_block = TimestepEmbedSequential(
            TimestepResBlock(
                ch,
                time_embed_dim,
                dropout,
                use_scale_shift_norm=use_scale_shift_norm,
                kernel_size=kernel_size,
            ),
            AttentionBlock(
                ch,
                num_heads=num_heads,
                num_head_channels=num_head_channels,
            ),
            TimestepResBlock(
                ch,
                time_embed_dim,
                dropout,
                use_scale_shift_norm=use_scale_shift_norm,
                kernel_size=kernel_size,
            ),
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, (mult, num_blocks) in list(enumerate(zip(channel_mult, num_res_blocks)))[::-1]:
            for i in range(num_blocks + 1):
                ich = input_block_chans.pop()
                layers = [
                    TimestepResBlock(
                        ch + ich,
                        time_embed_dim,
                        dropout,
                        out_channels=int(model_channels * mult),
                        use_scale_shift_norm=use_scale_shift_norm,
                        kernel_size=kernel_size,
                    )
                ]
                ch = int(model_channels * mult)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            num_heads=num_heads_upsample,
                            num_head_channels=num_head_channels,
                        )
                    )
                if level and i == num_blocks:
                    out_ch = ch
                    layers.append(
                        TimestepResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            use_scale_shift_norm=use_scale_shift_norm,
                            up=True,
                            kernel_size=kernel_size,
                        )
                        if resblock_updown
                        else Upsample(ch, conv_resample, out_channels=out_ch, factor=scale_factor)
                    )
                    ds //= 2
                layer = TimestepEmbedSequential(*layers)
                layer.level = 2 ** level
                self.output_blocks.append(layer)
                self._feature_size += ch

        self.out = nn.Sequential(
            normalization(ch),
            nn.SiLU(),
            zero_module(nn.Conv1d(model_channels, out_channels, kernel_size, padding=padding)),
        )

    def forward(self, x, timesteps, spectrogram, conditioning_input=None):
        """
        Apply the model to an input batch.

        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :param y: an [N] Tensor of labels, if class-conditional.
        :return: an [N x C x ...] Tensor of outputs.
        """
        assert x.shape[-1] % 2048 == 0  # This model operates at base//2048 at it's bottom levels, thus this requirement.
        if self.conditioning_enabled:
            assert conditioning_input is not None

        hs = []
        emb1 = self.time_embed(timestep_embedding(timesteps, self.model_channels))
        if self.conditioning_enabled:
            emb2 = self.contextual_embedder(conditioning_input)
            emb = emb1 + emb2
        else:
            emb = emb1

        h = x.type(self.dtype)
        for k, module in enumerate(self.input_blocks):
            if isinstance(module, DiscreteSpectrogramConditioningBlock):
                h = module(h, spectrogram)
            else:
                h = module(h, emb)
                hs.append(h)
        h = self.middle_block(h, emb)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb)
        h = h.type(x.dtype)
        return self.out(h)


# Test for ~4 second audio clip at 22050Hz
if __name__ == '__main__':
    clip = torch.randn(2, 1, 40960)
    spec = torch.randn(2,80,160)
    cond = torch.randn(2, 1, 40960)
    ts = torch.LongTensor([555, 556])
    model = DiscreteDiffusionVocoder(model_channels=128, channel_mult=[1, 1, 1.5, 2, 3, 4, 6, 8, 8, 8, 8],
                                     num_res_blocks=[1,2, 2, 2, 2, 2, 2, 2, 2,   1,  1 ], spectrogram_conditioning_resolutions=[2,512],
                                     dropout=.05, attention_resolutions=[512,1024], num_heads=4, kernel_size=3, scale_factor=2,
                                     conditioning_inputs_provided=True, conditioning_input_dim=80, time_embed_dim_multiplier=4,
                                     dvae_dim=80)

    print(model(clip, ts, spec, cond).shape)