File size: 14,784 Bytes
5a958b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import functools
from math import sqrt
import torch
import torch.distributed as distributed
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
def default(val, d):
return val if val is not None else d
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
# Quantizer implemented by the rosinality vqvae repo.
# Credit: https://github.com/rosinality/vq-vae-2-pytorch
class Quantize(nn.Module):
def __init__(self, dim, n_embed, decay=0.99, eps=1e-5, balancing_heuristic=False, new_return_order=False):
super().__init__()
self.dim = dim
self.n_embed = n_embed
self.decay = decay
self.eps = eps
self.balancing_heuristic = balancing_heuristic
self.codes = None
self.max_codes = 64000
self.codes_full = False
self.new_return_order = new_return_order
embed = torch.randn(dim, n_embed)
self.register_buffer("embed", embed)
self.register_buffer("cluster_size", torch.zeros(n_embed))
self.register_buffer("embed_avg", embed.clone())
def forward(self, input, return_soft_codes=False):
if self.balancing_heuristic and self.codes_full:
h = torch.histc(self.codes, bins=self.n_embed, min=0, max=self.n_embed) / len(self.codes)
mask = torch.logical_or(h > .9, h < .01).unsqueeze(1)
ep = self.embed.permute(1,0)
ea = self.embed_avg.permute(1,0)
rand_embed = torch.randn_like(ep) * mask
self.embed = (ep * ~mask + rand_embed).permute(1,0)
self.embed_avg = (ea * ~mask + rand_embed).permute(1,0)
self.cluster_size = self.cluster_size * ~mask.squeeze()
if torch.any(mask):
print(f"Reset {torch.sum(mask)} embedding codes.")
self.codes = None
self.codes_full = False
flatten = input.reshape(-1, self.dim)
dist = (
flatten.pow(2).sum(1, keepdim=True)
- 2 * flatten @ self.embed
+ self.embed.pow(2).sum(0, keepdim=True)
)
soft_codes = -dist
_, embed_ind = soft_codes.max(1)
embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype)
embed_ind = embed_ind.view(*input.shape[:-1])
quantize = self.embed_code(embed_ind)
if self.balancing_heuristic:
if self.codes is None:
self.codes = embed_ind.flatten()
else:
self.codes = torch.cat([self.codes, embed_ind.flatten()])
if len(self.codes) > self.max_codes:
self.codes = self.codes[-self.max_codes:]
self.codes_full = True
if self.training:
embed_onehot_sum = embed_onehot.sum(0)
embed_sum = flatten.transpose(0, 1) @ embed_onehot
if distributed.is_initialized() and distributed.get_world_size() > 1:
distributed.all_reduce(embed_onehot_sum)
distributed.all_reduce(embed_sum)
self.cluster_size.data.mul_(self.decay).add_(
embed_onehot_sum, alpha=1 - self.decay
)
self.embed_avg.data.mul_(self.decay).add_(embed_sum, alpha=1 - self.decay)
n = self.cluster_size.sum()
cluster_size = (
(self.cluster_size + self.eps) / (n + self.n_embed * self.eps) * n
)
embed_normalized = self.embed_avg / cluster_size.unsqueeze(0)
self.embed.data.copy_(embed_normalized)
diff = (quantize.detach() - input).pow(2).mean()
quantize = input + (quantize - input).detach()
if return_soft_codes:
return quantize, diff, embed_ind, soft_codes.view(input.shape[:-1] + (-1,))
elif self.new_return_order:
return quantize, embed_ind, diff
else:
return quantize, diff, embed_ind
def embed_code(self, embed_id):
return F.embedding(embed_id, self.embed.transpose(0, 1))
# Fits a soft-discretized input to a normal-PDF across the specified dimension.
# In other words, attempts to force the discretization function to have a mean equal utilization across all discrete
# values with the specified expected variance.
class DiscretizationLoss(nn.Module):
def __init__(self, discrete_bins, dim, expected_variance, store_past=0):
super().__init__()
self.discrete_bins = discrete_bins
self.dim = dim
self.dist = torch.distributions.Normal(0, scale=expected_variance)
if store_past > 0:
self.record_past = True
self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device='cpu'))
self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device='cpu'))
self.register_buffer("accumulator", torch.zeros(store_past, discrete_bins))
else:
self.record_past = False
def forward(self, x):
other_dims = set(range(len(x.shape)))-set([self.dim])
averaged = x.sum(dim=tuple(other_dims)) / x.sum()
averaged = averaged - averaged.mean()
if self.record_past:
acc_count = self.accumulator.shape[0]
avg = averaged.detach().clone()
if self.accumulator_filled > 0:
averaged = torch.mean(self.accumulator, dim=0) * (acc_count-1) / acc_count + \
averaged / acc_count
# Also push averaged into the accumulator.
self.accumulator[self.accumulator_index] = avg
self.accumulator_index += 1
if self.accumulator_index >= acc_count:
self.accumulator_index *= 0
if self.accumulator_filled <= 0:
self.accumulator_filled += 1
return torch.sum(-self.dist.log_prob(averaged))
class ResBlock(nn.Module):
def __init__(self, chan, conv, activation):
super().__init__()
self.net = nn.Sequential(
conv(chan, chan, 3, padding = 1),
activation(),
conv(chan, chan, 3, padding = 1),
activation(),
conv(chan, chan, 1)
)
def forward(self, x):
return self.net(x) + x
class UpsampledConv(nn.Module):
def __init__(self, conv, *args, **kwargs):
super().__init__()
assert 'stride' in kwargs.keys()
self.stride = kwargs['stride']
del kwargs['stride']
self.conv = conv(*args, **kwargs)
def forward(self, x):
up = nn.functional.interpolate(x, scale_factor=self.stride, mode='nearest')
return self.conv(up)
# DiscreteVAE partially derived from lucidrains DALLE implementation
# Credit: https://github.com/lucidrains/DALLE-pytorch
class DiscreteVAE(nn.Module):
def __init__(
self,
positional_dims=2,
num_tokens = 512,
codebook_dim = 512,
num_layers = 3,
num_resnet_blocks = 0,
hidden_dim = 64,
channels = 3,
stride = 2,
kernel_size = 4,
use_transposed_convs = True,
encoder_norm = False,
activation = 'relu',
smooth_l1_loss = False,
straight_through = False,
normalization = None, # ((0.5,) * 3, (0.5,) * 3),
record_codes = False,
discretization_loss_averaging_steps = 100,
lr_quantizer_args = {},
):
super().__init__()
has_resblocks = num_resnet_blocks > 0
self.num_tokens = num_tokens
self.num_layers = num_layers
self.straight_through = straight_through
self.positional_dims = positional_dims
self.discrete_loss = DiscretizationLoss(num_tokens, 2, 1 / (num_tokens*2), discretization_loss_averaging_steps)
assert positional_dims > 0 and positional_dims < 3 # This VAE only supports 1d and 2d inputs for now.
if positional_dims == 2:
conv = nn.Conv2d
conv_transpose = nn.ConvTranspose2d
else:
conv = nn.Conv1d
conv_transpose = nn.ConvTranspose1d
if not use_transposed_convs:
conv_transpose = functools.partial(UpsampledConv, conv)
if activation == 'relu':
act = nn.ReLU
elif activation == 'silu':
act = nn.SiLU
else:
assert NotImplementedError()
enc_layers = []
dec_layers = []
if num_layers > 0:
enc_chans = [hidden_dim * 2 ** i for i in range(num_layers)]
dec_chans = list(reversed(enc_chans))
enc_chans = [channels, *enc_chans]
dec_init_chan = codebook_dim if not has_resblocks else dec_chans[0]
dec_chans = [dec_init_chan, *dec_chans]
enc_chans_io, dec_chans_io = map(lambda t: list(zip(t[:-1], t[1:])), (enc_chans, dec_chans))
pad = (kernel_size - 1) // 2
for (enc_in, enc_out), (dec_in, dec_out) in zip(enc_chans_io, dec_chans_io):
enc_layers.append(nn.Sequential(conv(enc_in, enc_out, kernel_size, stride = stride, padding = pad), act()))
if encoder_norm:
enc_layers.append(nn.GroupNorm(8, enc_out))
dec_layers.append(nn.Sequential(conv_transpose(dec_in, dec_out, kernel_size, stride = stride, padding = pad), act()))
dec_out_chans = dec_chans[-1]
innermost_dim = dec_chans[0]
else:
enc_layers.append(nn.Sequential(conv(channels, hidden_dim, 1), act()))
dec_out_chans = hidden_dim
innermost_dim = hidden_dim
for _ in range(num_resnet_blocks):
dec_layers.insert(0, ResBlock(innermost_dim, conv, act))
enc_layers.append(ResBlock(innermost_dim, conv, act))
if num_resnet_blocks > 0:
dec_layers.insert(0, conv(codebook_dim, innermost_dim, 1))
enc_layers.append(conv(innermost_dim, codebook_dim, 1))
dec_layers.append(conv(dec_out_chans, channels, 1))
self.encoder = nn.Sequential(*enc_layers)
self.decoder = nn.Sequential(*dec_layers)
self.loss_fn = F.smooth_l1_loss if smooth_l1_loss else F.mse_loss
self.codebook = Quantize(codebook_dim, num_tokens, new_return_order=True)
# take care of normalization within class
self.normalization = normalization
self.record_codes = record_codes
if record_codes:
self.codes = torch.zeros((1228800,), dtype=torch.long)
self.code_ind = 0
self.total_codes = 0
self.internal_step = 0
def norm(self, images):
if not self.normalization is not None:
return images
means, stds = map(lambda t: torch.as_tensor(t).to(images), self.normalization)
arrange = 'c -> () c () ()' if self.positional_dims == 2 else 'c -> () c ()'
means, stds = map(lambda t: rearrange(t, arrange), (means, stds))
images = images.clone()
images.sub_(means).div_(stds)
return images
def get_debug_values(self, step, __):
if self.record_codes and self.total_codes > 0:
# Report annealing schedule
return {'histogram_codes': self.codes[:self.total_codes]}
else:
return {}
@torch.no_grad()
@eval_decorator
def get_codebook_indices(self, images):
img = self.norm(images)
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
sampled, codes, _ = self.codebook(logits)
self.log_codes(codes)
return codes
def decode(
self,
img_seq
):
self.log_codes(img_seq)
if hasattr(self.codebook, 'embed_code'):
image_embeds = self.codebook.embed_code(img_seq)
else:
image_embeds = F.embedding(img_seq, self.codebook.codebook)
b, n, d = image_embeds.shape
kwargs = {}
if self.positional_dims == 1:
arrange = 'b n d -> b d n'
else:
h = w = int(sqrt(n))
arrange = 'b (h w) d -> b d h w'
kwargs = {'h': h, 'w': w}
image_embeds = rearrange(image_embeds, arrange, **kwargs)
images = [image_embeds]
for layer in self.decoder:
images.append(layer(images[-1]))
return images[-1], images[-2]
def infer(self, img):
img = self.norm(img)
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
sampled, codes, commitment_loss = self.codebook(logits)
return self.decode(codes)
# Note: This module is not meant to be run in forward() except while training. It has special logic which performs
# evaluation using quantized values when it detects that it is being run in eval() mode, which will be substantially
# more lossy (but useful for determining network performance).
def forward(
self,
img
):
img = self.norm(img)
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
sampled, codes, commitment_loss = self.codebook(logits)
sampled = sampled.permute((0,3,1,2) if len(img.shape) == 4 else (0,2,1))
if self.training:
out = sampled
for d in self.decoder:
out = d(out)
self.log_codes(codes)
else:
# This is non-differentiable, but gives a better idea of how the network is actually performing.
out, _ = self.decode(codes)
# reconstruction loss
recon_loss = self.loss_fn(img, out, reduction='none')
return recon_loss, commitment_loss, out
def log_codes(self, codes):
# This is so we can debug the distribution of codes being learned.
if self.record_codes and self.internal_step % 10 == 0:
codes = codes.flatten()
l = codes.shape[0]
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
self.codes[i:i+l] = codes.cpu()
self.code_ind = self.code_ind + l
if self.code_ind >= self.codes.shape[0]:
self.code_ind = 0
self.total_codes += 1
self.internal_step += 1
if __name__ == '__main__':
v = DiscreteVAE(channels=80, normalization=None, positional_dims=1, num_tokens=8192, codebook_dim=2048,
hidden_dim=512, num_resnet_blocks=3, kernel_size=3, num_layers=1, use_transposed_convs=False)
r,l,o=v(torch.randn(1,80,256))
v.decode(torch.randint(0,8192,(1,256)))
print(o.shape, l.shape)
|