Spaces:
Runtime error
Runtime error
File size: 6,302 Bytes
d11a7a2 d360108 62248f2 d11a7a2 62248f2 d11a7a2 d360108 3858779 d360108 c80976f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
import torch
from torchvision.transforms import transforms
import numpy as np
from typing import Optional
import torch.nn as nn
class BasicBlock(nn.Module):
"""ResNet Basic Block.
Parameters
----------
in_channels : int
Number of input channels
out_channels : int
Number of output channels
stride : int, optional
Convolution stride size, by default 1
identity_downsample : Optional[torch.nn.Module], optional
Downsampling layer, by default None
"""
def __init__(self,
in_channels: int,
out_channels: int,
stride: int = 1,
identity_downsample: Optional[torch.nn.Module] = None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels,
out_channels,
kernel_size = 3,
stride = stride,
padding = 1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(out_channels,
out_channels,
kernel_size = 3,
stride = 1,
padding = 1)
self.bn2 = nn.BatchNorm2d(out_channels)
self.identity_downsample = identity_downsample
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Apply forward computation."""
identity = x
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
# Apply an operation to the identity output.
# Useful to reduce the layer size and match from conv2 output
if self.identity_downsample is not None:
identity = self.identity_downsample(identity)
x += identity
x = self.relu(x)
return x
class ResNet18(nn.Module):
"""Construct ResNet-18 Model.
Parameters
----------
input_channels : int
Number of input channels
num_classes : int
Number of class outputs
"""
def __init__(self, input_channels, num_classes):
super(ResNet18, self).__init__()
self.conv1 = nn.Conv2d(input_channels,
64, kernel_size = 7,
stride = 2, padding=3)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size = 3,
stride = 2,
padding = 1)
self.layer1 = self._make_layer(64, 64, stride = 1)
self.layer2 = self._make_layer(64, 128, stride = 2)
self.layer3 = self._make_layer(128, 256, stride = 2)
self.layer4 = self._make_layer(256, 512, stride = 2)
# Last layers
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def identity_downsample(self, in_channels: int, out_channels: int) -> nn.Module:
"""Downsampling block to reduce the feature sizes."""
return nn.Sequential(
nn.Conv2d(in_channels,
out_channels,
kernel_size = 3,
stride = 2,
padding = 1),
nn.BatchNorm2d(out_channels)
)
def _make_layer(self, in_channels: int, out_channels: int, stride: int) -> nn.Module:
"""Create sequential basic block."""
identity_downsample = None
# Add downsampling function
if stride != 1:
identity_downsample = self.identity_downsample(in_channels, out_channels)
return nn.Sequential(
BasicBlock(in_channels, out_channels, identity_downsample=identity_downsample, stride=stride),
BasicBlock(out_channels, out_channels)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.shape[0], -1)
x = self.fc(x)
return x
model = ResNet18(1, 5)
checkpoint = torch.load('acc=0.94.ckpt', map_location=torch.device('cpu'))
# The state dict will contains net.layer_name
# Our model doesn't contains `net.` so we have to rename it
state_dict = checkpoint['state_dict']
for key in list(state_dict.keys()):
if 'net.' in key:
state_dict[key.replace('net.', '')] = state_dict[key]
del state_dict[key]
model.load_state_dict(state_dict)
model.eval()
class_names = ['abdominal', 'adult', 'others', 'pediatric', 'spine']
class_names.sort()
transformation_pipeline = transforms.Compose([
transforms.ToPILImage(),
transforms.Grayscale(num_output_channels=1),
transforms.CenterCrop((384, 384)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.50807575], std=[0.20823])
])
def preprocess_image(image: np.ndarray):
"""Preprocess the input image.
Note that the input image is in RGB mode.
Parameters
----------
image: np.ndarray
Input image from callback.
"""
image = transformation_pipeline(image)
image = torch.unsqueeze(image, 0)
return image
def image_classifier(inp):
"""Image Classifier Function.
Parameters
----------
inp: Optional[np.ndarray] = None
Input image from callback
Returns
-------
Dict
A dictionary class names and its probability
"""
# If input not valid, return dummy data or raise error
if inp is None:
return {'cat': 0.3, 'dog': 0.7}
# preprocess
image = preprocess_image(inp)
image = image.to(dtype=torch.float32)
# inference
result = model(image)
# postprocess
result = torch.nn.functional.softmax(result, dim=1) # apply softmax
result = result[0].detach().numpy().tolist() # take the first batch
labeled_result = {name:score for name, score in zip(class_names, result)}
return labeled_result
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label")
demo.launch(share=True) |