Spaces:
Runtime error
Runtime error
Jason Adrian
commited on
Commit
·
d360108
1
Parent(s):
eff3c10
bodypartxr classifier
Browse files- app.py +82 -4
- resnet18.py +129 -0
app.py
CHANGED
|
@@ -1,7 +1,85 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from torchvision.transforms import transforms
|
| 4 |
+
import numpy as np
|
| 5 |
|
| 6 |
+
from resnet18 import ResNet18
|
|
|
|
| 7 |
|
| 8 |
+
model = ResNet18(1, 5)
|
| 9 |
+
|
| 10 |
+
checkpoint = torch.load('C:\jason\semester 8\Magang\Hugging-face-bodypartxr\bodypartxr\acc=0.94.ckpt')
|
| 11 |
+
|
| 12 |
+
# The state dict will contains net.layer_name
|
| 13 |
+
# Our model doesn't contains `net.` so we have to rename it
|
| 14 |
+
state_dict = checkpoint['state_dict']
|
| 15 |
+
for key in list(state_dict.keys()):
|
| 16 |
+
if 'net.' in key:
|
| 17 |
+
state_dict[key.replace('net.', '')] = state_dict[key]
|
| 18 |
+
del state_dict[key]
|
| 19 |
+
|
| 20 |
+
model.load_state_dict(state_dict)
|
| 21 |
+
model.eval()
|
| 22 |
+
|
| 23 |
+
class_names = ['abdominal', 'adult', 'others', 'pediatric', 'spine']
|
| 24 |
+
class_names.sort()
|
| 25 |
+
|
| 26 |
+
transformation_pipeline = transforms.Compose([
|
| 27 |
+
transforms.ToPILImage(),
|
| 28 |
+
transforms.Grayscale(num_output_channels=1),
|
| 29 |
+
transforms.CenterCrop((384, 384)),
|
| 30 |
+
transforms.ToTensor(),
|
| 31 |
+
transforms.Normalize(mean=[0.50807575], std=[0.20823])
|
| 32 |
+
])
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def preprocess_image(image: np.ndarray):
|
| 36 |
+
"""Preprocess the input image.
|
| 37 |
+
|
| 38 |
+
Note that the input image is in RGB mode.
|
| 39 |
+
|
| 40 |
+
Parameters
|
| 41 |
+
----------
|
| 42 |
+
image: np.ndarray
|
| 43 |
+
Input image from callback.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
image = transformation_pipeline(image)
|
| 47 |
+
image = torch.unsqueeze(image, 0)
|
| 48 |
+
|
| 49 |
+
return image
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def image_classifier(inp):
|
| 53 |
+
"""Image Classifier Function.
|
| 54 |
+
|
| 55 |
+
Parameters
|
| 56 |
+
----------
|
| 57 |
+
inp: Optional[np.ndarray] = None
|
| 58 |
+
Input image from callback
|
| 59 |
+
|
| 60 |
+
Returns
|
| 61 |
+
-------
|
| 62 |
+
Dict
|
| 63 |
+
A dictionary class names and its probability
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
# If input not valid, return dummy data or raise error
|
| 67 |
+
if inp is None:
|
| 68 |
+
return {'cat': 0.3, 'dog': 0.7}
|
| 69 |
+
|
| 70 |
+
# preprocess
|
| 71 |
+
image = preprocess_image(inp)
|
| 72 |
+
image = image.to(dtype=torch.float32)
|
| 73 |
+
|
| 74 |
+
# inference
|
| 75 |
+
result = model(image)
|
| 76 |
+
|
| 77 |
+
# postprocess
|
| 78 |
+
result = torch.nn.functional.softmax(result, dim=1) # apply softmax
|
| 79 |
+
result = result[0].detach().numpy().tolist() # take the first batch
|
| 80 |
+
labeled_result = {name:score for name, score in zip(class_names, result)}
|
| 81 |
+
|
| 82 |
+
return labeled_result
|
| 83 |
+
|
| 84 |
+
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label")
|
| 85 |
+
demo.launch()
|
resnet18.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
class BasicBlock(nn.Module):
|
| 7 |
+
"""ResNet Basic Block.
|
| 8 |
+
|
| 9 |
+
Parameters
|
| 10 |
+
----------
|
| 11 |
+
in_channels : int
|
| 12 |
+
Number of input channels
|
| 13 |
+
out_channels : int
|
| 14 |
+
Number of output channels
|
| 15 |
+
stride : int, optional
|
| 16 |
+
Convolution stride size, by default 1
|
| 17 |
+
identity_downsample : Optional[torch.nn.Module], optional
|
| 18 |
+
Downsampling layer, by default None
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
def __init__(self,
|
| 22 |
+
in_channels: int,
|
| 23 |
+
out_channels: int,
|
| 24 |
+
stride: int = 1,
|
| 25 |
+
identity_downsample: Optional[torch.nn.Module] = None):
|
| 26 |
+
super(BasicBlock, self).__init__()
|
| 27 |
+
self.conv1 = nn.Conv2d(in_channels,
|
| 28 |
+
out_channels,
|
| 29 |
+
kernel_size = 3,
|
| 30 |
+
stride = stride,
|
| 31 |
+
padding = 1)
|
| 32 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
| 33 |
+
self.relu = nn.ReLU()
|
| 34 |
+
self.conv2 = nn.Conv2d(out_channels,
|
| 35 |
+
out_channels,
|
| 36 |
+
kernel_size = 3,
|
| 37 |
+
stride = 1,
|
| 38 |
+
padding = 1)
|
| 39 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
| 40 |
+
self.identity_downsample = identity_downsample
|
| 41 |
+
|
| 42 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 43 |
+
"""Apply forward computation."""
|
| 44 |
+
identity = x
|
| 45 |
+
x = self.conv1(x)
|
| 46 |
+
x = self.bn1(x)
|
| 47 |
+
x = self.relu(x)
|
| 48 |
+
x = self.conv2(x)
|
| 49 |
+
x = self.bn2(x)
|
| 50 |
+
|
| 51 |
+
# Apply an operation to the identity output.
|
| 52 |
+
# Useful to reduce the layer size and match from conv2 output
|
| 53 |
+
if self.identity_downsample is not None:
|
| 54 |
+
identity = self.identity_downsample(identity)
|
| 55 |
+
x += identity
|
| 56 |
+
x = self.relu(x)
|
| 57 |
+
return x
|
| 58 |
+
|
| 59 |
+
class ResNet18(nn.Module):
|
| 60 |
+
"""Construct ResNet-18 Model.
|
| 61 |
+
|
| 62 |
+
Parameters
|
| 63 |
+
----------
|
| 64 |
+
input_channels : int
|
| 65 |
+
Number of input channels
|
| 66 |
+
num_classes : int
|
| 67 |
+
Number of class outputs
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
def __init__(self, input_channels, num_classes):
|
| 71 |
+
|
| 72 |
+
super(ResNet18, self).__init__()
|
| 73 |
+
self.conv1 = nn.Conv2d(input_channels,
|
| 74 |
+
64, kernel_size = 7,
|
| 75 |
+
stride = 2, padding=3)
|
| 76 |
+
self.bn1 = nn.BatchNorm2d(64)
|
| 77 |
+
self.relu = nn.ReLU()
|
| 78 |
+
self.maxpool = nn.MaxPool2d(kernel_size = 3,
|
| 79 |
+
stride = 2,
|
| 80 |
+
padding = 1)
|
| 81 |
+
|
| 82 |
+
self.layer1 = self._make_layer(64, 64, stride = 1)
|
| 83 |
+
self.layer2 = self._make_layer(64, 128, stride = 2)
|
| 84 |
+
self.layer3 = self._make_layer(128, 256, stride = 2)
|
| 85 |
+
self.layer4 = self._make_layer(256, 512, stride = 2)
|
| 86 |
+
|
| 87 |
+
# Last layers
|
| 88 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
| 89 |
+
self.fc = nn.Linear(512, num_classes)
|
| 90 |
+
|
| 91 |
+
def identity_downsample(self, in_channels: int, out_channels: int) -> nn.Module:
|
| 92 |
+
"""Downsampling block to reduce the feature sizes."""
|
| 93 |
+
return nn.Sequential(
|
| 94 |
+
nn.Conv2d(in_channels,
|
| 95 |
+
out_channels,
|
| 96 |
+
kernel_size = 3,
|
| 97 |
+
stride = 2,
|
| 98 |
+
padding = 1),
|
| 99 |
+
nn.BatchNorm2d(out_channels)
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
def _make_layer(self, in_channels: int, out_channels: int, stride: int) -> nn.Module:
|
| 103 |
+
"""Create sequential basic block."""
|
| 104 |
+
identity_downsample = None
|
| 105 |
+
|
| 106 |
+
# Add downsampling function
|
| 107 |
+
if stride != 1:
|
| 108 |
+
identity_downsample = self.identity_downsample(in_channels, out_channels)
|
| 109 |
+
|
| 110 |
+
return nn.Sequential(
|
| 111 |
+
BasicBlock(in_channels, out_channels, identity_downsample=identity_downsample, stride=stride),
|
| 112 |
+
BasicBlock(out_channels, out_channels)
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 116 |
+
x = self.conv1(x)
|
| 117 |
+
x = self.bn1(x)
|
| 118 |
+
x = self.relu(x)
|
| 119 |
+
x = self.maxpool(x)
|
| 120 |
+
|
| 121 |
+
x = self.layer1(x)
|
| 122 |
+
x = self.layer2(x)
|
| 123 |
+
x = self.layer3(x)
|
| 124 |
+
x = self.layer4(x)
|
| 125 |
+
|
| 126 |
+
x = self.avgpool(x)
|
| 127 |
+
x = x.view(x.shape[0], -1)
|
| 128 |
+
x = self.fc(x)
|
| 129 |
+
return x
|