File size: 22,380 Bytes
46ff99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import json
import logging
import os
import sys
from functools import partial
from typing import List, Optional

import dinov2.distributed as distributed
import numpy as np
import torch
import torch.nn as nn
from dinov2.data import SamplerType, make_data_loader, make_dataset
from dinov2.data.transforms import (
    make_classification_eval_transform,
    make_classification_train_transform,
)
from dinov2.eval.metrics import MetricType, build_metric
from dinov2.eval.setup import get_args_parser as get_setup_args_parser
from dinov2.eval.setup import setup_and_build_model
from dinov2.eval.utils import ModelWithIntermediateLayers, evaluate
from dinov2.logging import MetricLogger
from fvcore.common.checkpoint import Checkpointer, PeriodicCheckpointer
from torch.nn.parallel import DistributedDataParallel

logger = logging.getLogger("dinov2")


def get_args_parser(
    description: Optional[str] = None,
    parents: Optional[List[argparse.ArgumentParser]] = None,
    add_help: bool = True,
):
    parents = parents or []
    setup_args_parser = get_setup_args_parser(parents=parents, add_help=False)
    parents = [setup_args_parser]
    parser = argparse.ArgumentParser(
        description=description,
        parents=parents,
        add_help=add_help,
    )
    parser.add_argument(
        "--train-dataset",
        dest="train_dataset_str",
        type=str,
        help="Training dataset",
    )
    parser.add_argument(
        "--val-dataset",
        dest="val_dataset_str",
        type=str,
        help="Validation dataset",
    )
    parser.add_argument(
        "--test-datasets",
        dest="test_dataset_strs",
        type=str,
        nargs="+",
        help="Test datasets, none to reuse the validation dataset",
    )
    parser.add_argument(
        "--epochs",
        type=int,
        help="Number of training epochs",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        help="Batch Size (per GPU)",
    )
    parser.add_argument(
        "--num-workers",
        type=int,
        help="Number de Workers",
    )
    parser.add_argument(
        "--epoch-length",
        type=int,
        help="Length of an epoch in number of iterations",
    )
    parser.add_argument(
        "--save-checkpoint-frequency",
        type=int,
        help="Number of epochs between two named checkpoint saves.",
    )
    parser.add_argument(
        "--eval-period-iterations",
        type=int,
        help="Number of iterations between two evaluations.",
    )
    parser.add_argument(
        "--learning-rates",
        nargs="+",
        type=float,
        help="Learning rates to grid search.",
    )
    parser.add_argument(
        "--no-resume",
        action="store_true",
        help="Whether to not resume from existing checkpoints",
    )
    parser.add_argument(
        "--val-metric-type",
        type=MetricType,
        choices=list(MetricType),
        help="Validation metric",
    )
    parser.add_argument(
        "--test-metric-types",
        type=MetricType,
        choices=list(MetricType),
        nargs="+",
        help="Evaluation metric",
    )
    parser.add_argument(
        "--classifier-fpath",
        type=str,
        help="Path to a file containing pretrained linear classifiers",
    )
    parser.add_argument(
        "--val-class-mapping-fpath",
        type=str,
        help="Path to a file containing a mapping to adjust classifier outputs",
    )
    parser.add_argument(
        "--test-class-mapping-fpaths",
        nargs="+",
        type=str,
        help="Path to a file containing a mapping to adjust classifier outputs",
    )
    parser.set_defaults(
        train_dataset_str="ImageNet:split=TRAIN",
        val_dataset_str="ImageNet:split=VAL",
        test_dataset_strs=None,
        epochs=10,
        batch_size=128,
        num_workers=8,
        epoch_length=1250,
        save_checkpoint_frequency=20,
        eval_period_iterations=1250,
        learning_rates=[
            1e-5,
            2e-5,
            5e-5,
            1e-4,
            2e-4,
            5e-4,
            1e-3,
            2e-3,
            5e-3,
            1e-2,
            2e-2,
            5e-2,
            0.1,
        ],
        val_metric_type=MetricType.MEAN_ACCURACY,
        test_metric_types=None,
        classifier_fpath=None,
        val_class_mapping_fpath=None,
        test_class_mapping_fpaths=[None],
    )
    return parser


def has_ddp_wrapper(m: nn.Module) -> bool:
    return isinstance(m, DistributedDataParallel)


def remove_ddp_wrapper(m: nn.Module) -> nn.Module:
    return m.module if has_ddp_wrapper(m) else m


def _pad_and_collate(batch):
    maxlen = max(len(targets) for image, targets in batch)
    padded_batch = [
        (image, np.pad(targets, (0, maxlen - len(targets)), constant_values=-1))
        for image, targets in batch
    ]
    return torch.utils.data.default_collate(padded_batch)


def create_linear_input(x_tokens_list, use_n_blocks, use_avgpool):
    intermediate_output = x_tokens_list[-use_n_blocks:]
    output = torch.cat([class_token for _, class_token in intermediate_output], dim=-1)
    if use_avgpool:
        output = torch.cat(
            (
                output,
                torch.mean(intermediate_output[-1][0], dim=1),  # patch tokens
            ),
            dim=-1,
        )
        output = output.reshape(output.shape[0], -1)
    return output.float()


class LinearClassifier(nn.Module):
    """Linear layer to train on top of frozen features"""

    def __init__(self, out_dim, use_n_blocks, use_avgpool, num_classes=1000):
        super().__init__()
        self.out_dim = out_dim
        self.use_n_blocks = use_n_blocks
        self.use_avgpool = use_avgpool
        self.num_classes = num_classes
        self.linear = nn.Linear(out_dim, num_classes)
        self.linear.weight.data.normal_(mean=0.0, std=0.01)
        self.linear.bias.data.zero_()

    def forward(self, x_tokens_list):
        output = create_linear_input(x_tokens_list, self.use_n_blocks, self.use_avgpool)
        return self.linear(output)


class AllClassifiers(nn.Module):
    def __init__(self, classifiers_dict):
        super().__init__()
        self.classifiers_dict = nn.ModuleDict()
        self.classifiers_dict.update(classifiers_dict)

    def forward(self, inputs):
        return {k: v.forward(inputs) for k, v in self.classifiers_dict.items()}

    def __len__(self):
        return len(self.classifiers_dict)


class LinearPostprocessor(nn.Module):
    def __init__(self, linear_classifier, class_mapping=None):
        super().__init__()
        self.linear_classifier = linear_classifier
        self.register_buffer(
            "class_mapping",
            None if class_mapping is None else torch.LongTensor(class_mapping),
        )

    def forward(self, samples, targets):
        preds = self.linear_classifier(samples)
        return {
            "preds": (
                preds[:, self.class_mapping]
                if self.class_mapping is not None
                else preds
            ),
            "target": targets,
        }


def scale_lr(learning_rates, batch_size):
    return learning_rates * (batch_size * distributed.get_global_size()) / 256.0


def setup_linear_classifiers(
    sample_output, n_last_blocks_list, learning_rates, batch_size, num_classes=1000
):
    linear_classifiers_dict = nn.ModuleDict()
    optim_param_groups = []
    for n in n_last_blocks_list:
        for avgpool in [False, True]:
            for _lr in learning_rates:
                lr = scale_lr(_lr, batch_size)
                out_dim = create_linear_input(
                    sample_output, use_n_blocks=n, use_avgpool=avgpool
                ).shape[1]
                linear_classifier = LinearClassifier(
                    out_dim,
                    use_n_blocks=n,
                    use_avgpool=avgpool,
                    num_classes=num_classes,
                )
                linear_classifier = linear_classifier.cuda()
                linear_classifiers_dict[
                    f"classifier_{n}_blocks_avgpool_{avgpool}_lr_{lr:.5f}".replace(
                        ".", "_"
                    )
                ] = linear_classifier
                optim_param_groups.append(
                    {"params": linear_classifier.parameters(), "lr": lr}
                )

    linear_classifiers = AllClassifiers(linear_classifiers_dict)
    if distributed.is_enabled():
        linear_classifiers = nn.parallel.DistributedDataParallel(linear_classifiers)

    return linear_classifiers, optim_param_groups


@torch.no_grad()
def evaluate_linear_classifiers(
    feature_model,
    linear_classifiers,
    data_loader,
    metric_type,
    metrics_file_path,
    training_num_classes,
    iteration,
    prefixstring="",
    class_mapping=None,
    best_classifier_on_val=None,
):
    logger.info("running validation !")

    num_classes = (
        len(class_mapping) if class_mapping is not None else training_num_classes
    )
    metric = build_metric(metric_type, num_classes=num_classes)
    postprocessors = {
        k: LinearPostprocessor(v, class_mapping)
        for k, v in linear_classifiers.classifiers_dict.items()
    }
    metrics = {k: metric.clone() for k in linear_classifiers.classifiers_dict}

    _, results_dict_temp = evaluate(
        feature_model,
        data_loader,
        postprocessors,
        metrics,
        torch.cuda.current_device(),
    )

    logger.info("")
    results_dict = {}
    max_accuracy = 0
    best_classifier = ""
    for i, (classifier_string, metric) in enumerate(results_dict_temp.items()):
        logger.info(f"{prefixstring} -- Classifier: {classifier_string} * {metric}")
        if (
            best_classifier_on_val is None and metric["top-1"].item() > max_accuracy
        ) or classifier_string == best_classifier_on_val:
            max_accuracy = metric["top-1"].item()
            best_classifier = classifier_string

    results_dict["best_classifier"] = {
        "name": best_classifier,
        "accuracy": max_accuracy,
    }

    logger.info(f"best classifier: {results_dict['best_classifier']}")

    if distributed.is_main_process():
        with open(metrics_file_path, "a") as f:
            f.write(f"iter: {iteration}\n")
            for k, v in results_dict.items():
                f.write(json.dumps({k: v}) + "\n")
            f.write("\n")

    return results_dict


def eval_linear(
    *,
    feature_model,
    linear_classifiers,
    train_data_loader,
    val_data_loader,
    metrics_file_path,
    optimizer,
    scheduler,
    output_dir,
    max_iter,
    checkpoint_period,  # In number of iter, creates a new file every period
    running_checkpoint_period,  # Period to update main checkpoint file
    eval_period,
    metric_type,
    training_num_classes,
    resume=True,
    classifier_fpath=None,
    val_class_mapping=None,
):
    checkpointer = Checkpointer(
        linear_classifiers, output_dir, optimizer=optimizer, scheduler=scheduler
    )
    start_iter = (
        checkpointer.resume_or_load(classifier_fpath or "", resume=resume).get(
            "iteration", -1
        )
        + 1
    )

    periodic_checkpointer = PeriodicCheckpointer(
        checkpointer, checkpoint_period, max_iter=max_iter
    )
    iteration = start_iter
    logger.info("Starting training from iteration {}".format(start_iter))
    metric_logger = MetricLogger(delimiter="  ")
    header = "Training"

    for data, labels in metric_logger.log_every(
        train_data_loader,
        10,
        header,
        max_iter,
        start_iter,
    ):
        data = data.cuda(non_blocking=True)
        labels = labels.cuda(non_blocking=True)

        features = feature_model(data)
        outputs = linear_classifiers(features)

        losses = {
            f"loss_{k}": nn.CrossEntropyLoss()(v, labels) for k, v in outputs.items()
        }
        loss = sum(losses.values())

        # compute the gradients
        optimizer.zero_grad()
        loss.backward()

        # step
        optimizer.step()
        scheduler.step()

        # log
        if iteration % 10 == 0:
            torch.cuda.synchronize()
            metric_logger.update(loss=loss.item())
            metric_logger.update(lr=optimizer.param_groups[0]["lr"])
            print("lr", optimizer.param_groups[0]["lr"])

        if iteration - start_iter > 5:
            if iteration % running_checkpoint_period == 0:
                torch.cuda.synchronize()
                if distributed.is_main_process():
                    logger.info("Checkpointing running_checkpoint")
                    periodic_checkpointer.save(
                        "running_checkpoint_linear_eval", iteration=iteration
                    )
                torch.cuda.synchronize()
        periodic_checkpointer.step(iteration)

        if (
            eval_period > 0
            and (iteration + 1) % eval_period == 0
            and iteration != max_iter - 1
        ):
            _ = evaluate_linear_classifiers(
                feature_model=feature_model,
                linear_classifiers=remove_ddp_wrapper(linear_classifiers),
                data_loader=val_data_loader,
                metrics_file_path=metrics_file_path,
                prefixstring=f"ITER: {iteration}",
                metric_type=metric_type,
                training_num_classes=training_num_classes,
                iteration=iteration,
                class_mapping=val_class_mapping,
            )
            torch.cuda.synchronize()

        iteration = iteration + 1

    val_results_dict = evaluate_linear_classifiers(
        feature_model=feature_model,
        linear_classifiers=remove_ddp_wrapper(linear_classifiers),
        data_loader=val_data_loader,
        metrics_file_path=metrics_file_path,
        metric_type=metric_type,
        training_num_classes=training_num_classes,
        iteration=iteration,
        class_mapping=val_class_mapping,
    )
    return val_results_dict, feature_model, linear_classifiers, iteration


def make_eval_data_loader(test_dataset_str, batch_size, num_workers, metric_type):
    test_dataset = make_dataset(
        dataset_str=test_dataset_str,
        transform=make_classification_eval_transform(),
    )
    test_data_loader = make_data_loader(
        dataset=test_dataset,
        batch_size=batch_size,
        num_workers=num_workers,
        sampler_type=SamplerType.DISTRIBUTED,
        drop_last=False,
        shuffle=False,
        persistent_workers=False,
        collate_fn=(
            _pad_and_collate
            if metric_type == MetricType.IMAGENET_REAL_ACCURACY
            else None
        ),
    )
    return test_data_loader


def test_on_datasets(
    feature_model,
    linear_classifiers,
    test_dataset_strs,
    batch_size,
    num_workers,
    test_metric_types,
    metrics_file_path,
    training_num_classes,
    iteration,
    best_classifier_on_val,
    prefixstring="",
    test_class_mappings=[None],
):
    results_dict = {}
    for test_dataset_str, class_mapping, metric_type in zip(
        test_dataset_strs, test_class_mappings, test_metric_types
    ):
        logger.info(f"Testing on {test_dataset_str}")
        test_data_loader = make_eval_data_loader(
            test_dataset_str, batch_size, num_workers, metric_type
        )
        dataset_results_dict = evaluate_linear_classifiers(
            feature_model,
            remove_ddp_wrapper(linear_classifiers),
            test_data_loader,
            metric_type,
            metrics_file_path,
            training_num_classes,
            iteration,
            prefixstring="",
            class_mapping=class_mapping,
            best_classifier_on_val=best_classifier_on_val,
        )
        results_dict[f"{test_dataset_str}_accuracy"] = (
            100.0 * dataset_results_dict["best_classifier"]["accuracy"]
        )
    return results_dict


def run_eval_linear(
    model,
    output_dir,
    train_dataset_str,
    val_dataset_str,
    batch_size,
    epochs,
    epoch_length,
    num_workers,
    save_checkpoint_frequency,
    eval_period_iterations,
    learning_rates,
    autocast_dtype,
    test_dataset_strs=None,
    resume=True,
    classifier_fpath=None,
    val_class_mapping_fpath=None,
    test_class_mapping_fpaths=[None],
    val_metric_type=MetricType.MEAN_ACCURACY,
    test_metric_types=None,
):
    seed = 0

    if test_dataset_strs is None:
        test_dataset_strs = [val_dataset_str]
    if test_metric_types is None:
        test_metric_types = [val_metric_type] * len(test_dataset_strs)
    else:
        assert len(test_metric_types) == len(test_dataset_strs)
    assert len(test_dataset_strs) == len(test_class_mapping_fpaths)

    train_transform = make_classification_train_transform()
    train_dataset = make_dataset(
        dataset_str=train_dataset_str,
        transform=train_transform,
    )
    training_num_classes = len(
        torch.unique(torch.Tensor(train_dataset.get_targets().astype(int)))
    )
    sampler_type = SamplerType.SHARDED_INFINITE
    # sampler_type = SamplerType.INFINITE

    n_last_blocks_list = [1, 4]
    n_last_blocks = max(n_last_blocks_list)
    autocast_ctx = partial(torch.cuda.amp.autocast, enabled=True, dtype=autocast_dtype)
    feature_model = ModelWithIntermediateLayers(model, n_last_blocks, autocast_ctx)
    sample_output = feature_model(train_dataset[0][0].unsqueeze(0).cuda())

    linear_classifiers, optim_param_groups = setup_linear_classifiers(
        sample_output,
        n_last_blocks_list,
        learning_rates,
        batch_size,
        training_num_classes,
    )

    optimizer = torch.optim.SGD(optim_param_groups, momentum=0.9, weight_decay=0)
    max_iter = epochs * epoch_length
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
        optimizer, max_iter, eta_min=0
    )
    checkpointer = Checkpointer(
        linear_classifiers, output_dir, optimizer=optimizer, scheduler=scheduler
    )
    start_iter = (
        checkpointer.resume_or_load(classifier_fpath or "", resume=resume).get(
            "iteration", -1
        )
        + 1
    )
    train_data_loader = make_data_loader(
        dataset=train_dataset,
        batch_size=batch_size,
        num_workers=num_workers,
        shuffle=True,
        seed=seed,
        sampler_type=sampler_type,
        sampler_advance=start_iter,
        drop_last=True,
        persistent_workers=True,
    )
    val_data_loader = make_eval_data_loader(
        val_dataset_str, batch_size, num_workers, val_metric_type
    )

    checkpoint_period = save_checkpoint_frequency * epoch_length

    if val_class_mapping_fpath is not None:
        logger.info(f"Using class mapping from {val_class_mapping_fpath}")
        val_class_mapping = np.load(val_class_mapping_fpath)
    else:
        val_class_mapping = None

    test_class_mappings = []
    for class_mapping_fpath in test_class_mapping_fpaths:
        if class_mapping_fpath is not None and class_mapping_fpath != "None":
            logger.info(f"Using class mapping from {class_mapping_fpath}")
            class_mapping = np.load(class_mapping_fpath)
        else:
            class_mapping = None
        test_class_mappings.append(class_mapping)

    metrics_file_path = os.path.join(output_dir, "results_eval_linear.json")
    val_results_dict, feature_model, linear_classifiers, iteration = eval_linear(
        feature_model=feature_model,
        linear_classifiers=linear_classifiers,
        train_data_loader=train_data_loader,
        val_data_loader=val_data_loader,
        metrics_file_path=metrics_file_path,
        optimizer=optimizer,
        scheduler=scheduler,
        output_dir=output_dir,
        max_iter=max_iter,
        checkpoint_period=checkpoint_period,
        running_checkpoint_period=epoch_length,
        eval_period=eval_period_iterations,
        metric_type=val_metric_type,
        training_num_classes=training_num_classes,
        resume=resume,
        val_class_mapping=val_class_mapping,
        classifier_fpath=classifier_fpath,
    )
    results_dict = {}
    if len(test_dataset_strs) > 1 or test_dataset_strs[0] != val_dataset_str:
        results_dict = test_on_datasets(
            feature_model,
            linear_classifiers,
            test_dataset_strs,
            batch_size,
            0,  # num_workers,
            test_metric_types,
            metrics_file_path,
            training_num_classes,
            iteration,
            val_results_dict["best_classifier"]["name"],
            prefixstring="",
            test_class_mappings=test_class_mappings,
        )
    results_dict["best_classifier"] = val_results_dict["best_classifier"]["name"]
    results_dict[f"{val_dataset_str}_accuracy"] = (
        100.0 * val_results_dict["best_classifier"]["accuracy"]
    )
    logger.info("Test Results Dict " + str(results_dict))

    return results_dict


def main(args):
    model, autocast_dtype = setup_and_build_model(args)
    run_eval_linear(
        model=model,
        output_dir=args.output_dir,
        train_dataset_str=args.train_dataset_str,
        val_dataset_str=args.val_dataset_str,
        test_dataset_strs=args.test_dataset_strs,
        batch_size=args.batch_size,
        epochs=args.epochs,
        epoch_length=args.epoch_length,
        num_workers=args.num_workers,
        save_checkpoint_frequency=args.save_checkpoint_frequency,
        eval_period_iterations=args.eval_period_iterations,
        learning_rates=args.learning_rates,
        autocast_dtype=autocast_dtype,
        resume=not args.no_resume,
        classifier_fpath=args.classifier_fpath,
        val_metric_type=args.val_metric_type,
        test_metric_types=args.test_metric_types,
        val_class_mapping_fpath=args.val_class_mapping_fpath,
        test_class_mapping_fpaths=args.test_class_mapping_fpaths,
    )
    return 0


if __name__ == "__main__":
    description = "DINOv2 linear evaluation"
    args_parser = get_args_parser(description=description)
    args = args_parser.parse_args()
    sys.exit(main(args))