File size: 15,088 Bytes
5017efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# Copyright (c) 2024 NVIDIA CORPORATION.
#   Licensed under the MIT license.

# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
#   LICENSE is in incl_licenses directory.

import math
import os
import random
import torch
import torch.utils.data
import numpy as np
import librosa
from librosa.filters import mel as librosa_mel_fn
import pathlib
from tqdm import tqdm
from typing import List, Tuple, Optional
from .env import AttrDict

MAX_WAV_VALUE = 32767.0  # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases)


def dynamic_range_compression(x, C=1, clip_val=1e-5):
    return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)


def dynamic_range_decompression(x, C=1):
    return np.exp(x) / C


def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
    return torch.log(torch.clamp(x, min=clip_val) * C)


def dynamic_range_decompression_torch(x, C=1):
    return torch.exp(x) / C


def spectral_normalize_torch(magnitudes):
    return dynamic_range_compression_torch(magnitudes)


def spectral_de_normalize_torch(magnitudes):
    return dynamic_range_decompression_torch(magnitudes)


mel_basis_cache = {}
hann_window_cache = {}


def mel_spectrogram(
    y: torch.Tensor,
    n_fft: int,
    num_mels: int,
    sampling_rate: int,
    hop_size: int,
    win_size: int,
    fmin: int,
    fmax: int = None,
    center: bool = False,
) -> torch.Tensor:
    """
    Calculate the mel spectrogram of an input signal.
    This function uses slaney norm for the librosa mel filterbank (using librosa.filters.mel) and uses Hann window for STFT (using torch.stft).

    Args:
        y (torch.Tensor): Input signal.
        n_fft (int): FFT size.
        num_mels (int): Number of mel bins.
        sampling_rate (int): Sampling rate of the input signal.
        hop_size (int): Hop size for STFT.
        win_size (int): Window size for STFT.
        fmin (int): Minimum frequency for mel filterbank.
        fmax (int): Maximum frequency for mel filterbank. If None, defaults to half the sampling rate (fmax = sr / 2.0) inside librosa_mel_fn
        center (bool): Whether to pad the input to center the frames. Default is False.

    Returns:
        torch.Tensor: Mel spectrogram.
    """
    if torch.min(y) < -1.0:
        print(f"[WARNING] Min value of input waveform signal is {torch.min(y)}")
    if torch.max(y) > 1.0:
        print(f"[WARNING] Max value of input waveform signal is {torch.max(y)}")

    device = y.device
    key = f"{n_fft}_{num_mels}_{sampling_rate}_{hop_size}_{win_size}_{fmin}_{fmax}_{device}"

    if key not in mel_basis_cache:
        mel = librosa_mel_fn(
            sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
        )
        mel_basis_cache[key] = torch.from_numpy(mel).float().to(device)
        hann_window_cache[key] = torch.hann_window(win_size).to(device)

    mel_basis = mel_basis_cache[key]
    hann_window = hann_window_cache[key]

    padding = (n_fft - hop_size) // 2
    y = torch.nn.functional.pad(
        y.unsqueeze(1), (padding, padding), mode="reflect"
    ).squeeze(1)

    spec = torch.stft(
        y,
        n_fft,
        hop_length=hop_size,
        win_length=win_size,
        window=hann_window,
        center=center,
        pad_mode="reflect",
        normalized=False,
        onesided=True,
        return_complex=True,
    )
    spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9)

    mel_spec = torch.matmul(mel_basis, spec)
    mel_spec = spectral_normalize_torch(mel_spec)

    return mel_spec


def get_mel_spectrogram(wav, h):
    """
    Generate mel spectrogram from a waveform using given hyperparameters.

    Args:
        wav (torch.Tensor): Input waveform.
        h: Hyperparameters object with attributes n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax.

    Returns:
        torch.Tensor: Mel spectrogram.
    """
    return mel_spectrogram(
        wav,
        h.n_fft,
        h.num_mels,
        h.sampling_rate,
        h.hop_size,
        h.win_size,
        h.fmin,
        h.fmax,
    )


def get_dataset_filelist(a):
    training_files = []
    validation_files = []
    list_unseen_validation_files = []

    with open(a.input_training_file, "r", encoding="utf-8") as fi:
        training_files = [
            os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav")
            for x in fi.read().split("\n")
            if len(x) > 0
        ]
        print(f"first training file: {training_files[0]}")

    with open(a.input_validation_file, "r", encoding="utf-8") as fi:
        validation_files = [
            os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav")
            for x in fi.read().split("\n")
            if len(x) > 0
        ]
        print(f"first validation file: {validation_files[0]}")

    for i in range(len(a.list_input_unseen_validation_file)):
        with open(a.list_input_unseen_validation_file[i], "r", encoding="utf-8") as fi:
            unseen_validation_files = [
                os.path.join(a.list_input_unseen_wavs_dir[i], x.split("|")[0] + ".wav")
                for x in fi.read().split("\n")
                if len(x) > 0
            ]
            print(
                f"first unseen {i}th validation fileset: {unseen_validation_files[0]}"
            )
            list_unseen_validation_files.append(unseen_validation_files)

    return training_files, validation_files, list_unseen_validation_files


class MelDataset(torch.utils.data.Dataset):
    def __init__(
        self,
        training_files: List[str],
        hparams: AttrDict,
        segment_size: int,
        n_fft: int,
        num_mels: int,
        hop_size: int,
        win_size: int,
        sampling_rate: int,
        fmin: int,
        fmax: Optional[int],
        split: bool = True,
        shuffle: bool = True,
        device: str = None,
        fmax_loss: Optional[int] = None,
        fine_tuning: bool = False,
        base_mels_path: str = None,
        is_seen: bool = True,
    ):
        self.audio_files = training_files
        random.seed(1234)
        if shuffle:
            random.shuffle(self.audio_files)
        self.hparams = hparams
        self.is_seen = is_seen
        if self.is_seen:
            self.name = pathlib.Path(self.audio_files[0]).parts[0]
        else:
            self.name = "-".join(pathlib.Path(self.audio_files[0]).parts[:2]).strip("/")

        self.segment_size = segment_size
        self.sampling_rate = sampling_rate
        self.split = split
        self.n_fft = n_fft
        self.num_mels = num_mels
        self.hop_size = hop_size
        self.win_size = win_size
        self.fmin = fmin
        self.fmax = fmax
        self.fmax_loss = fmax_loss
        self.device = device
        self.fine_tuning = fine_tuning
        self.base_mels_path = base_mels_path

        print("[INFO] checking dataset integrity...")
        for i in tqdm(range(len(self.audio_files))):
            assert os.path.exists(
                self.audio_files[i]
            ), f"{self.audio_files[i]} not found"

    def __getitem__(
        self, index: int
    ) -> Tuple[torch.Tensor, torch.Tensor, str, torch.Tensor]:
        try:
            filename = self.audio_files[index]

            # Use librosa.load that ensures loading waveform into mono with [-1, 1] float values
            # Audio is ndarray with shape [T_time]. Disable auto-resampling here to minimize overhead
            # The on-the-fly resampling during training will be done only for the obtained random chunk
            audio, source_sampling_rate = librosa.load(filename, sr=None, mono=True)

            # Main logic that uses <mel, audio> pair for training BigVGAN
            if not self.fine_tuning:
                if self.split:  # Training step
                    # Obtain randomized audio chunk
                    if source_sampling_rate != self.sampling_rate:
                        # Adjust segment size to crop if the source sr is different
                        target_segment_size = math.ceil(
                            self.segment_size
                            * (source_sampling_rate / self.sampling_rate)
                        )
                    else:
                        target_segment_size = self.segment_size

                    # Compute upper bound index for the random chunk
                    random_chunk_upper_bound = max(
                        0, audio.shape[0] - target_segment_size
                    )

                    # Crop or pad audio to obtain random chunk with target_segment_size
                    if audio.shape[0] >= target_segment_size:
                        audio_start = random.randint(0, random_chunk_upper_bound)
                        audio = audio[audio_start : audio_start + target_segment_size]
                    else:
                        audio = np.pad(
                            audio,
                            (0, target_segment_size - audio.shape[0]),
                            mode="constant",
                        )

                    # Resample audio chunk to self.sampling rate
                    if source_sampling_rate != self.sampling_rate:
                        audio = librosa.resample(
                            audio,
                            orig_sr=source_sampling_rate,
                            target_sr=self.sampling_rate,
                        )
                        if audio.shape[0] > self.segment_size:
                            # trim last elements to match self.segment_size (e.g., 16385 for 44khz downsampled to 24khz -> 16384)
                            audio = audio[: self.segment_size]

                else:  # Validation step
                    # Resample full audio clip to target sampling rate
                    if source_sampling_rate != self.sampling_rate:
                        audio = librosa.resample(
                            audio,
                            orig_sr=source_sampling_rate,
                            target_sr=self.sampling_rate,
                        )
                    # Trim last elements to match audio length to self.hop_size * n for evaluation
                    if (audio.shape[0] % self.hop_size) != 0:
                        audio = audio[: -(audio.shape[0] % self.hop_size)]

                # BigVGAN is trained using volume-normalized waveform
                audio = librosa.util.normalize(audio) * 0.95

                # Cast ndarray to torch tensor
                audio = torch.FloatTensor(audio)
                audio = audio.unsqueeze(0)  # [B(1), self.segment_size]

                # Compute mel spectrogram corresponding to audio
                mel = mel_spectrogram(
                    audio,
                    self.n_fft,
                    self.num_mels,
                    self.sampling_rate,
                    self.hop_size,
                    self.win_size,
                    self.fmin,
                    self.fmax,
                    center=False,
                )  # [B(1), self.num_mels, self.segment_size // self.hop_size]

            # Fine-tuning logic that uses pre-computed mel. Example: Using TTS model-generated mel as input
            else:
                # For fine-tuning, assert that the waveform is in the defined sampling_rate
                # Fine-tuning won't support on-the-fly resampling to be fool-proof (the dataset should have been prepared properly)
                assert (
                    source_sampling_rate == self.sampling_rate
                ), f"For fine_tuning, waveform must be in the spcified sampling rate {self.sampling_rate}, got {source_sampling_rate}"

                # Cast ndarray to torch tensor
                audio = torch.FloatTensor(audio)
                audio = audio.unsqueeze(0)  # [B(1), T_time]

                # Load pre-computed mel from disk
                mel = np.load(
                    os.path.join(
                        self.base_mels_path,
                        os.path.splitext(os.path.split(filename)[-1])[0] + ".npy",
                    )
                )
                mel = torch.from_numpy(mel)

                if len(mel.shape) < 3:
                    mel = mel.unsqueeze(0)  # ensure [B, C, T]

                if self.split:
                    frames_per_seg = math.ceil(self.segment_size / self.hop_size)

                    if audio.size(1) >= self.segment_size:
                        mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1)
                        mel = mel[:, :, mel_start : mel_start + frames_per_seg]
                        audio = audio[
                            :,
                            mel_start
                            * self.hop_size : (mel_start + frames_per_seg)
                            * self.hop_size,
                        ]

                    # Pad pre-computed mel and audio to match length to ensuring fine-tuning without error.
                    # NOTE: this may introduce a single-frame misalignment of the <pre-computed mel, audio>
                    # To remove possible misalignment, it is recommended to prepare the <pre-computed mel, audio> pair where the audio length is the integer multiple of self.hop_size
                    mel = torch.nn.functional.pad(
                        mel, (0, frames_per_seg - mel.size(2)), "constant"
                    )
                    audio = torch.nn.functional.pad(
                        audio, (0, self.segment_size - audio.size(1)), "constant"
                    )

            # Compute mel_loss used by spectral regression objective. Uses self.fmax_loss instead (usually None)
            mel_loss = mel_spectrogram(
                audio,
                self.n_fft,
                self.num_mels,
                self.sampling_rate,
                self.hop_size,
                self.win_size,
                self.fmin,
                self.fmax_loss,
                center=False,
            )  # [B(1), self.num_mels, self.segment_size // self.hop_size]

            # Shape sanity checks
            assert (
                audio.shape[1] == mel.shape[2] * self.hop_size
                and audio.shape[1] == mel_loss.shape[2] * self.hop_size
            ), f"Audio length must be mel frame length * hop_size. Got audio shape {audio.shape} mel shape {mel.shape} mel_loss shape {mel_loss.shape}"

            return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze())

        # If it encounters error during loading the data, skip this sample and load random other sample to the batch
        except Exception as e:
            if self.fine_tuning:
                raise e  # Terminate training if it is fine-tuning. The dataset should have been prepared properly.
            else:
                print(
                    f"[WARNING] Failed to load waveform, skipping! filename: {filename} Error: {e}"
                )
                return self[random.randrange(len(self))]

    def __len__(self):
        return len(self.audio_files)