Spaces:
Sleeping
Sleeping
File size: 6,598 Bytes
c3af76c 5ead791 c3af76c 5e91161 5ead791 c3af76c 21d3461 8e05eba f2c0884 8e05eba f2c0884 21d3461 c3af76c 0aef92c c3af76c 0aef92c c3af76c 0aef92c 21d3461 0aef92c c3af76c 0aef92c c3af76c 5ead791 f6eb5e3 8e05eba 5ead791 8e05eba 5ead791 8e05eba 21d3461 8e05eba 21d3461 8e05eba 21d3461 8e05eba 21d3461 8e05eba 21d3461 8e05eba c3af76c 8e05eba c3af76c 8e05eba 21d3461 8e05eba f6eb5e3 8e05eba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st
def _viz_rank(results):
tau = results["tau"]
concepts = results["concepts"]
tau_mu = tau.mean(axis=0)
sorted_idx = np.argsort(tau_mu)
sorted_tau = tau_mu[sorted_idx]
sorted_concepts = [concepts[idx] for idx in sorted_idx]
sorted_width = 1 - sorted_tau
sorted_width /= sorted_width.max()
sorted_width *= 80
rank_el = ""
for concept_idx, concept in enumerate(sorted_concepts):
circle_style = (
"background: #418FDE;border-radius: 50%;width:"
f" {sorted_width[concept_idx]}px;padding-bottom:"
f" {sorted_width[concept_idx]}px;"
)
rank_el += (
"<div id='conceptContainer'><p"
f" id='concept'><strong>{concept}<strong></p><div id='circleContainer'><div"
f" style='{circle_style}'></div></div></div>"
)
st.markdown(rank_el, unsafe_allow_html=True)
def _viz_test(results):
rejected = results["rejected"]
tau = results["tau"]
concepts = results["concepts"]
significance_level = results["significance_level"]
rejected_mu = rejected.mean(axis=0)
tau_mu = tau.mean(axis=0)
sorted_idx = np.argsort(tau_mu)[::-1]
sorted_tau = tau_mu[sorted_idx]
sorted_rejected = rejected_mu[sorted_idx]
sorted_concepts = [concepts[idx] for idx in sorted_idx]
rank_df = []
for concept, tau, rejected in zip(sorted_concepts, sorted_tau, sorted_rejected):
rank_df.append({"concept": concept, "tau": tau, "rejected": rejected})
rank_df = pd.DataFrame(rank_df)
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=rank_df["rejected"],
y=rank_df["concept"],
marker=dict(size=8),
line=dict(color="#1f78b4", dash="dash"),
name="Rejection rate",
)
)
fig.add_trace(
go.Bar(
x=rank_df["tau"],
y=rank_df["concept"],
orientation="h",
marker=dict(color="#a6cee3"),
name="Rejection time",
)
)
fig.add_trace(
go.Scatter(
x=[significance_level, significance_level],
y=[sorted_concepts[0], sorted_concepts[0]],
mode="lines",
line=dict(color="black", dash="dash"),
name="significance level",
)
)
fig.add_vline(significance_level, line_dash="dash", line_color="black")
fig.update_layout(
yaxis_title="Rank of importance",
xaxis_title="",
margin=dict(l=20, r=20, t=20, b=20),
)
if rank_df["tau"].min() <= 0.3:
fig.update_layout(
legend=dict(
x=0.3,
y=1.0,
bordercolor="black",
borderwidth=1,
),
)
_, centercol, _ = st.columns([1, 3, 1])
with centercol:
st.plotly_chart(fig, use_container_width=True)
def _viz_wealth(results):
wealth = results["wealth"]
concepts = results["concepts"]
significance_level = results["significance_level"]
wealth_mu = wealth.mean(axis=0)
wealth_df = []
for concept_idx, concept in enumerate(concepts):
for t in range(wealth.shape[1]):
wealth_df.append(
{"time": t, "concept": concept, "wealth": wealth_mu[t, concept_idx]}
)
wealth_df = pd.DataFrame(wealth_df)
fig = px.line(wealth_df, x="time", y="wealth", color="concept")
fig.add_hline(
y=1 / significance_level,
line_dash="dash",
line_color="black",
annotation_text="Rejection threshold (1 / α)",
annotation_position="bottom right",
)
fig.update_yaxes(range=[0, 1.5 * 1 / significance_level])
fig.update_layout(margin=dict(l=20, r=20, t=20, b=20))
st.plotly_chart(fig, use_container_width=True)
def viz_results():
results = st.session_state.results
st.header("Results")
rank_tab, test_tab, wealth_tab = st.tabs(
["Rank of importance", "Testing results", "Wealth process"]
)
with rank_tab:
st.subheader("Rank of Importance")
st.write(
"""
This tab visually shows the rank of importance of the specified concepts
for the prediction of the model on the input image. Larger font sizes indicate
higher importance. See the other two tabs for more details.
"""
)
if results is not None:
_viz_rank(results)
st.divider()
else:
st.info("Waiting for results", icon="ℹ️")
with test_tab:
st.subheader("Testing Results")
st.write(
"""
Importance is measured by performing sequential tests of statistical independence.
This tab shows the results of these tests and how the rank of importance is computed.
Concepts are sorted by increasing rejection time, where a shorter rejection time indicates
higher importance.
"""
)
with st.expander("Details"):
st.markdown(
"""
Results are averaged over multiple random draws of conditioning subsets of
concepts. The number of tests can be controlled under `Advanced settings`.
- **Rejection rate**: The average number of times the test is rejected for a concept.
- **Rejection time**: The (normalized) average number of steps before the test is
rejected for a concept.
- **Significance level**: The level at which the test is rejected for a concept.
"""
)
if results is not None:
_viz_test(results)
st.divider()
else:
st.info("Waiting for results", icon="ℹ️")
with wealth_tab:
st.subheader("Wealth Process of Testing Procedures")
st.markdown(
"""
Sequential tests instantiate a wealth process for each concept. Once the
wealth reaches a value of 1/α, the test is rejected with Type I error control at
level α. This tab shows the average wealth process of the testing procedures for
each concept.
"""
)
if results is not None:
_viz_wealth(results)
st.divider()
else:
st.info("Waiting for results", icon="ℹ️")
|