Spaces:
Sleeping
Sleeping
jacopoteneggi
commited on
Update
Browse files- app_lib/main.py +3 -3
- app_lib/user_input.py +36 -16
- app_lib/viz.py +21 -13
- assets/ace.jpg +0 -0
- assets/image_presets.json +52 -0
- assets/images/ace.jpg +0 -0
- assets/images/english_springer_1.jpg +0 -0
- assets/images/english_springer_2.jpg +0 -0
- assets/images/french_horn.jpg +0 -0
- assets/images/parachute.jpg +0 -0
app_lib/main.py
CHANGED
@@ -29,7 +29,7 @@ def main(device=torch.device("cuda" if torch.cuda.is_available() else "cpu")):
|
|
29 |
image_col, concepts_col = st.columns(2)
|
30 |
|
31 |
with image_col:
|
32 |
-
image = get_image()
|
33 |
st.image(image, use_column_width=True)
|
34 |
|
35 |
change_image_button = st.button(
|
@@ -42,8 +42,8 @@ def main(device=torch.device("cuda" if torch.cuda.is_available() else "cpu")):
|
|
42 |
st.experimental_rerun()
|
43 |
with concepts_col:
|
44 |
model_name = get_model_name()
|
45 |
-
class_name, class_ready, class_error = get_class_name()
|
46 |
-
concepts, concepts_ready, concepts_error = get_concepts()
|
47 |
|
48 |
ready = class_ready and concepts_ready
|
49 |
|
|
|
29 |
image_col, concepts_col = st.columns(2)
|
30 |
|
31 |
with image_col:
|
32 |
+
image_name, image = get_image()
|
33 |
st.image(image, use_column_width=True)
|
34 |
|
35 |
change_image_button = st.button(
|
|
|
42 |
st.experimental_rerun()
|
43 |
with concepts_col:
|
44 |
model_name = get_model_name()
|
45 |
+
class_name, class_ready, class_error = get_class_name(image_name)
|
46 |
+
concepts, concepts_ready, concepts_error = get_concepts(image_name)
|
47 |
|
48 |
ready = class_ready and concepts_ready
|
49 |
|
app_lib/user_input.py
CHANGED
@@ -1,9 +1,17 @@
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
from streamlit_image_select import image_select
|
4 |
|
5 |
from app_lib.utils import SUPPORTED_DATASETS, SUPPORTED_MODELS
|
6 |
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def _validate_class_name(class_name):
|
9 |
if class_name is None:
|
@@ -125,37 +133,49 @@ def get_model_name():
|
|
125 |
def get_image():
|
126 |
with st.sidebar:
|
127 |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
"
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
141 |
class_name = st.text_input(
|
142 |
"Class to test",
|
143 |
help="Name of the class to build the zero-shot CLIP classifier with.",
|
144 |
-
value=
|
145 |
disabled=st.session_state.disabled,
|
|
|
146 |
)
|
147 |
|
148 |
class_ready, class_error = _validate_class_name(class_name)
|
149 |
return class_name, class_ready, class_error
|
150 |
|
151 |
|
152 |
-
def get_concepts():
|
|
|
|
|
|
|
|
|
|
|
153 |
concepts = st.text_area(
|
154 |
"Concepts to test",
|
155 |
help="List of concepts to test the predictions of the model with. Write one concept per line. Maximum 10 concepts allowed.",
|
156 |
height=160,
|
157 |
-
value=
|
158 |
disabled=st.session_state.disabled,
|
|
|
159 |
)
|
160 |
concepts = concepts.split("\n")
|
161 |
concepts = [concept.strip() for concept in concepts]
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
import streamlit as st
|
5 |
from PIL import Image
|
6 |
from streamlit_image_select import image_select
|
7 |
|
8 |
from app_lib.utils import SUPPORTED_DATASETS, SUPPORTED_MODELS
|
9 |
|
10 |
+
IMAGE_DIR = os.path.join("assets", "images")
|
11 |
+
IMAGE_NAMES = list(sorted(filter(lambda x: x.endswith(".jpg"), os.listdir(IMAGE_DIR))))
|
12 |
+
IMAGE_PATHS = list(map(lambda x: os.path.join(IMAGE_DIR, x), IMAGE_NAMES))
|
13 |
+
IMAGE_PRESETS = json.load(open("assets/image_presets.json"))
|
14 |
+
|
15 |
|
16 |
def _validate_class_name(class_name):
|
17 |
if class_name is None:
|
|
|
133 |
def get_image():
|
134 |
with st.sidebar:
|
135 |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
136 |
+
if uploaded_file is not None:
|
137 |
+
return (None, Image.open(uploaded_file))
|
138 |
+
else:
|
139 |
+
DEFAULT = IMAGE_NAMES.index("ace.jpg")
|
140 |
+
image_idx = image_select(
|
141 |
+
label="or select one",
|
142 |
+
images=IMAGE_PATHS,
|
143 |
+
index=DEFAULT,
|
144 |
+
return_value="index",
|
145 |
+
)
|
146 |
+
image_name, image_path = IMAGE_NAMES[image_idx], IMAGE_PATHS[image_idx]
|
147 |
+
return (image_name, Image.open(image_path))
|
148 |
+
|
149 |
+
|
150 |
+
def get_class_name(image_name=None):
|
151 |
+
DEFAULT = (
|
152 |
+
IMAGE_PRESETS[image_name.split(".")[0]]["class_name"] if image_name else ""
|
153 |
+
)
|
154 |
class_name = st.text_input(
|
155 |
"Class to test",
|
156 |
help="Name of the class to build the zero-shot CLIP classifier with.",
|
157 |
+
value=DEFAULT,
|
158 |
disabled=st.session_state.disabled,
|
159 |
+
placeholder="Type class name here",
|
160 |
)
|
161 |
|
162 |
class_ready, class_error = _validate_class_name(class_name)
|
163 |
return class_name, class_ready, class_error
|
164 |
|
165 |
|
166 |
+
def get_concepts(image_name=None):
|
167 |
+
DEFAULT = (
|
168 |
+
"\n".join(IMAGE_PRESETS[image_name.split(".")[0]]["concepts"])
|
169 |
+
if image_name
|
170 |
+
else ""
|
171 |
+
)
|
172 |
concepts = st.text_area(
|
173 |
"Concepts to test",
|
174 |
help="List of concepts to test the predictions of the model with. Write one concept per line. Maximum 10 concepts allowed.",
|
175 |
height=160,
|
176 |
+
value=DEFAULT,
|
177 |
disabled=st.session_state.disabled,
|
178 |
+
placeholder="Type one concept\nper line",
|
179 |
)
|
180 |
concepts = concepts.split("\n")
|
181 |
concepts = [concept.strip() for concept in concepts]
|
app_lib/viz.py
CHANGED
@@ -41,23 +41,32 @@ def _viz_rank(results):
|
|
41 |
y=rank_df["concept"],
|
42 |
orientation="h",
|
43 |
marker=dict(color="#a6cee3"),
|
44 |
-
name="
|
45 |
)
|
46 |
)
|
47 |
-
fig.
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
name="significance level",
|
56 |
-
showlegend=True,
|
57 |
)
|
|
|
|
|
58 |
fig.update_layout(yaxis_title="Rank of importance", xaxis_title="")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
_, centercol, _ = st.columns([1,
|
61 |
with centercol:
|
62 |
st.plotly_chart(fig, use_container_width=True)
|
63 |
|
@@ -86,7 +95,6 @@ def _viz_wealth(results):
|
|
86 |
annotation_position="bottom right",
|
87 |
)
|
88 |
fig.update_yaxes(range=[0, 1.5 * 1 / significance_level])
|
89 |
-
# fig.update_layout(legend=dict(orientation="h", x=0, y=1.2))
|
90 |
st.plotly_chart(fig, use_container_width=True)
|
91 |
|
92 |
|
|
|
41 |
y=rank_df["concept"],
|
42 |
orientation="h",
|
43 |
marker=dict(color="#a6cee3"),
|
44 |
+
name="Rejection time",
|
45 |
)
|
46 |
)
|
47 |
+
fig.add_trace(
|
48 |
+
go.Scatter(
|
49 |
+
x=[significance_level, significance_level],
|
50 |
+
y=[sorted_concepts[0], sorted_concepts[0]],
|
51 |
+
mode="lines",
|
52 |
+
line=dict(color="black", dash="dash"),
|
53 |
+
name="significance level",
|
54 |
+
)
|
|
|
|
|
55 |
)
|
56 |
+
fig.add_vline(significance_level, line_dash="dash", line_color="black")
|
57 |
+
|
58 |
fig.update_layout(yaxis_title="Rank of importance", xaxis_title="")
|
59 |
+
if rank_df["tau"].min() <= 0.3:
|
60 |
+
fig.update_layout(
|
61 |
+
legend=dict(
|
62 |
+
x=0.3,
|
63 |
+
y=1.0,
|
64 |
+
bordercolor="black",
|
65 |
+
borderwidth=1,
|
66 |
+
),
|
67 |
+
)
|
68 |
|
69 |
+
_, centercol, _ = st.columns([1, 3, 1])
|
70 |
with centercol:
|
71 |
st.plotly_chart(fig, use_container_width=True)
|
72 |
|
|
|
95 |
annotation_position="bottom right",
|
96 |
)
|
97 |
fig.update_yaxes(range=[0, 1.5 * 1 / significance_level])
|
|
|
98 |
st.plotly_chart(fig, use_container_width=True)
|
99 |
|
100 |
|
assets/ace.jpg
DELETED
Binary file (197 kB)
|
|
assets/image_presets.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ace": {
|
3 |
+
"class_name": "cat",
|
4 |
+
"concepts": [
|
5 |
+
"piano",
|
6 |
+
"cute",
|
7 |
+
"whiskers",
|
8 |
+
"music",
|
9 |
+
"wild"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
"english_springer_1": {
|
13 |
+
"class_name": "English springer",
|
14 |
+
"concepts": [
|
15 |
+
"spaniel",
|
16 |
+
"sibling",
|
17 |
+
"fluffy",
|
18 |
+
"patch",
|
19 |
+
"portrait"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
"english_springer_2": {
|
23 |
+
"class_name": "English springer",
|
24 |
+
"concepts": [
|
25 |
+
"spaniel",
|
26 |
+
"fetch",
|
27 |
+
"fishing",
|
28 |
+
"trumpet",
|
29 |
+
"cathedral"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
"french_horn": {
|
33 |
+
"class_name": "French horn",
|
34 |
+
"concepts": [
|
35 |
+
"trumpet",
|
36 |
+
"band",
|
37 |
+
"instrument",
|
38 |
+
"major",
|
39 |
+
"naval"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
"parachute": {
|
43 |
+
"class_name": "parachute",
|
44 |
+
"concepts": [
|
45 |
+
"flew",
|
46 |
+
"descending",
|
47 |
+
"tandem",
|
48 |
+
"instrument",
|
49 |
+
"band"
|
50 |
+
]
|
51 |
+
}
|
52 |
+
}
|
assets/images/ace.jpg
ADDED
assets/images/english_springer_1.jpg
ADDED
assets/images/english_springer_2.jpg
ADDED
assets/images/french_horn.jpg
ADDED
assets/images/parachute.jpg
ADDED