File size: 2,797 Bytes
e72ab86
 
 
 
44a343d
 
0229f11
 
8edb732
e72ab86
 
 
 
 
 
6369161
e72ab86
6369161
 
e72ab86
 
 
 
316b18c
e72ab86
 
ff5d575
 
e72ab86
316b18c
e72ab86
 
 
 
 
 
 
0229f11
e72ab86
 
 
 
 
 
 
 
 
 
ff5d575
 
e72ab86
0229f11
e72ab86
ff5d575
0229f11
d75bf46
 
 
0229f11
 
 
d75bf46
5becc54
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import gradio as gr
import os
import requests

SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
TITLE = "Image Prompter"
EXAMPLE_PROMPT = "A Reflective cat between stars."
EXAMPLE_IMAGE_URL = "https://www.bing.com/images/create/a-black-cat-with-a-shiny2c-reflective-coat-is-float/1-656c50e048424f578a489a4875acd14f?id=%2b0DNSc2C8Sw26e32dIzHZA%3d%3d&view=detailv2&idpp=genimg&idpclose=1&FORM=SYDBIC"

zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta/"

HF_TOKEN = os.getenv("HF_TOKEN")
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}

def build_input_prompt(message, chatbot, system_prompt):
    input_prompt = "\n" + system_prompt + "</s>\n\n"
    for interaction in chatbot:
        input_prompt = input_prompt + str(interaction[0]) + "</s>\n\n" + str(interaction[1]) + "\n</s>\n\n"
    input_prompt = input_prompt + str(message) + "</s>\n"
    return input_prompt

def post_request_beta(payload):
    response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
    response.raise_for_status()
    return response.json()

def predict_beta(message, chatbot=None, system_prompt=""):
    chatbot = [] if chatbot is None else chatbot  # Ensure chatbot is not None
    input_prompt = build_input_prompt(message, chatbot, system_prompt)
    data = {"inputs": input_prompt}
    try:
        response_data = post_request_beta(data)
        json_obj = response_data[0]
        if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
            bot_message = json_obj['generated_text']
            return bot_message
        elif 'error' in json_obj:
            raise gr.Error(json_obj['error'] + ' Please refresh and try again with a smaller input prompt')
        else:
            warning_msg = f"Unexpected response: {json_obj}"
            raise gr.Error(warning_msg)
    except requests.HTTPError as e:
        error_msg = f"Request failed with status code {e.response.status_code}"
        raise gr.Error(error_msg)
    except json.JSONDecodeError as e:
        error_msg = f"Failed to decode response as JSON: {str(e)}"
        raise gr.Error(error_msg)

def test_preview_chatbot(message, history=None):
    history = [] if history is None else history  # Ensure history is not None
    response = predict_beta(message, history, SYSTEM_PROMPT)
    return response, EXAMPLE_IMAGE_URL


# Launch the interface
gr.Interface(
    fn=test_preview_chatbot,
    live=False,
    examples=[[EXAMPLE_PROMPT]],
    inputs=gr.Textbox(scale=7, container=False, value=EXAMPLE_PROMPT),
    outputs=[gr.Textbox(), gr.Image()],
).launch(share=True)