Spaces:
Sleeping
Sleeping
File size: 2,797 Bytes
e72ab86 44a343d 0229f11 8edb732 e72ab86 6369161 e72ab86 6369161 e72ab86 316b18c e72ab86 ff5d575 e72ab86 316b18c e72ab86 0229f11 e72ab86 ff5d575 e72ab86 0229f11 e72ab86 ff5d575 0229f11 d75bf46 0229f11 d75bf46 5becc54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import gradio as gr
import os
import requests
SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
TITLE = "Image Prompter"
EXAMPLE_PROMPT = "A Reflective cat between stars."
EXAMPLE_IMAGE_URL = "https://www.bing.com/images/create/a-black-cat-with-a-shiny2c-reflective-coat-is-float/1-656c50e048424f578a489a4875acd14f?id=%2b0DNSc2C8Sw26e32dIzHZA%3d%3d&view=detailv2&idpp=genimg&idpclose=1&FORM=SYDBIC"
zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta/"
HF_TOKEN = os.getenv("HF_TOKEN")
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
def build_input_prompt(message, chatbot, system_prompt):
input_prompt = "\n" + system_prompt + "</s>\n\n"
for interaction in chatbot:
input_prompt = input_prompt + str(interaction[0]) + "</s>\n\n" + str(interaction[1]) + "\n</s>\n\n"
input_prompt = input_prompt + str(message) + "</s>\n"
return input_prompt
def post_request_beta(payload):
response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
response.raise_for_status()
return response.json()
def predict_beta(message, chatbot=None, system_prompt=""):
chatbot = [] if chatbot is None else chatbot # Ensure chatbot is not None
input_prompt = build_input_prompt(message, chatbot, system_prompt)
data = {"inputs": input_prompt}
try:
response_data = post_request_beta(data)
json_obj = response_data[0]
if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
bot_message = json_obj['generated_text']
return bot_message
elif 'error' in json_obj:
raise gr.Error(json_obj['error'] + ' Please refresh and try again with a smaller input prompt')
else:
warning_msg = f"Unexpected response: {json_obj}"
raise gr.Error(warning_msg)
except requests.HTTPError as e:
error_msg = f"Request failed with status code {e.response.status_code}"
raise gr.Error(error_msg)
except json.JSONDecodeError as e:
error_msg = f"Failed to decode response as JSON: {str(e)}"
raise gr.Error(error_msg)
def test_preview_chatbot(message, history=None):
history = [] if history is None else history # Ensure history is not None
response = predict_beta(message, history, SYSTEM_PROMPT)
return response, EXAMPLE_IMAGE_URL
# Launch the interface
gr.Interface(
fn=test_preview_chatbot,
live=False,
examples=[[EXAMPLE_PROMPT]],
inputs=gr.Textbox(scale=7, container=False, value=EXAMPLE_PROMPT),
outputs=[gr.Textbox(), gr.Image()],
).launch(share=True)
|