Spaces:
Sleeping
Sleeping
TA
commited on
Commit
•
316b18c
1
Parent(s):
ed40985
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import requests
|
@@ -5,14 +6,31 @@ import json
|
|
5 |
|
6 |
SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
|
7 |
TITLE = "Image Prompter"
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
html_temp = """
|
11 |
-
<div style="
|
12 |
-
<
|
13 |
-
|
14 |
-
<
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
</div>
|
17 |
"""
|
18 |
|
@@ -22,36 +40,23 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
22 |
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
|
23 |
|
24 |
def build_input_prompt(message, chatbot, system_prompt):
|
25 |
-
"""
|
26 |
-
Constructs the input prompt string from the chatbot interactions and the current message.
|
27 |
-
"""
|
28 |
input_prompt = "\n" + system_prompt + "</s>\n\n"
|
29 |
for interaction in chatbot:
|
30 |
input_prompt = input_prompt + str(interaction[0]) + "</s>\n\n" + str(interaction[1]) + "\n</s>\n\n"
|
31 |
-
|
32 |
input_prompt = input_prompt + str(message) + "</s>\n"
|
33 |
return input_prompt
|
34 |
|
35 |
-
|
36 |
def post_request_beta(payload):
|
37 |
-
"""
|
38 |
-
Sends a POST request to the predefined Zephyr-7b-Beta URL and returns the JSON response.
|
39 |
-
"""
|
40 |
response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
|
41 |
-
response.raise_for_status()
|
42 |
return response.json()
|
43 |
|
44 |
-
|
45 |
def predict_beta(message, chatbot=[], system_prompt=""):
|
46 |
input_prompt = build_input_prompt(message, chatbot, system_prompt)
|
47 |
-
data = {
|
48 |
-
"inputs": input_prompt
|
49 |
-
}
|
50 |
-
|
51 |
try:
|
52 |
response_data = post_request_beta(data)
|
53 |
json_obj = response_data[0]
|
54 |
-
|
55 |
if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
|
56 |
bot_message = json_obj['generated_text']
|
57 |
return bot_message
|
@@ -72,13 +77,17 @@ def test_preview_chatbot(message, history):
|
|
72 |
return response
|
73 |
|
74 |
welcome_preview_message = f"""
|
75 |
-
Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}**!:\nThis is a chatbot that can generate detailed prompts for image generation models based on simple and short user input.\
|
76 |
|
77 |
-
"{
|
|
|
|
|
|
|
78 |
"""
|
79 |
|
80 |
chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
|
81 |
-
textbox_preview = gr.Textbox(scale=7, container=False, value=
|
|
|
|
|
82 |
|
83 |
-
demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview, examples=[[EXAMPLE_INPUT]])
|
84 |
demo.launch(share=True)
|
|
|
1 |
+
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
import requests
|
|
|
6 |
|
7 |
SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
|
8 |
TITLE = "Image Prompter"
|
9 |
+
EXAMPLE_INPUTS = [
|
10 |
+
{"prompt": "A Reflective cat between stars.", "image_url": "https://www.bing.com/images/create/a-black-cat-with-a-shiny2c-reflective-coat-is-float/1-656c50e048424f578a489a4875acd14f?id=%2b0DNSc2C8Sw26e32dIzHZA%3d%3d&view=detailv2&idpp=genimg&idpclose=1&FORM=SYDBIC"},
|
11 |
+
{"prompt": "A Stunning sunset over the mountains.", "image_url": "https://www.example.com/sunset_image.jpg"},
|
12 |
+
{"prompt": "An Enchanted forest with fireflies.", "image_url": "https://www.example.com/forest_image.jpg"},
|
13 |
+
{"prompt": "A Mysterious spaceship in the night sky.", "image_url": "https://www.example.com/spaceship_image.jpg"}
|
14 |
+
]
|
15 |
|
16 |
html_temp = """
|
17 |
+
<div style="display: flex; justify-content: space-between; padding: 10px;">
|
18 |
+
<div>
|
19 |
+
<img src='{image_url_1}' alt='Image 1' style='width:100px;height:100px;'>
|
20 |
+
<p>{prompt_1}</p>
|
21 |
+
</div>
|
22 |
+
<div>
|
23 |
+
<img src='{image_url_2}' alt='Image 2' style='width:100px;height:100px;'>
|
24 |
+
<p>{prompt_2}</p>
|
25 |
+
</div>
|
26 |
+
<div>
|
27 |
+
<img src='{image_url_3}' alt='Image 3' style='width:100px;height:100px;'>
|
28 |
+
<p>{prompt_3}</p>
|
29 |
+
</div>
|
30 |
+
<div>
|
31 |
+
<img src='{image_url_4}' alt='Image 4' style='width:100px;height:100px;'>
|
32 |
+
<p>{prompt_4}</p>
|
33 |
+
</div>
|
34 |
</div>
|
35 |
"""
|
36 |
|
|
|
40 |
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
|
41 |
|
42 |
def build_input_prompt(message, chatbot, system_prompt):
|
|
|
|
|
|
|
43 |
input_prompt = "\n" + system_prompt + "</s>\n\n"
|
44 |
for interaction in chatbot:
|
45 |
input_prompt = input_prompt + str(interaction[0]) + "</s>\n\n" + str(interaction[1]) + "\n</s>\n\n"
|
|
|
46 |
input_prompt = input_prompt + str(message) + "</s>\n"
|
47 |
return input_prompt
|
48 |
|
|
|
49 |
def post_request_beta(payload):
|
|
|
|
|
|
|
50 |
response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
|
51 |
+
response.raise_for_status()
|
52 |
return response.json()
|
53 |
|
|
|
54 |
def predict_beta(message, chatbot=[], system_prompt=""):
|
55 |
input_prompt = build_input_prompt(message, chatbot, system_prompt)
|
56 |
+
data = {"inputs": input_prompt}
|
|
|
|
|
|
|
57 |
try:
|
58 |
response_data = post_request_beta(data)
|
59 |
json_obj = response_data[0]
|
|
|
60 |
if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
|
61 |
bot_message = json_obj['generated_text']
|
62 |
return bot_message
|
|
|
77 |
return response
|
78 |
|
79 |
welcome_preview_message = f"""
|
80 |
+
Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}**!:\nThis is a chatbot that can generate detailed prompts for image generation models based on simple and short user input.\nTry one of these prompts:
|
81 |
|
82 |
+
- "{EXAMPLE_INPUTS[0]['prompt']}"
|
83 |
+
- "{EXAMPLE_INPUTS[1]['prompt']}"
|
84 |
+
- "{EXAMPLE_INPUTS[2]['prompt']}"
|
85 |
+
- "{EXAMPLE_INPUTS[3]['prompt']}"
|
86 |
"""
|
87 |
|
88 |
chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
|
89 |
+
textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUTS[0]['prompt'])
|
90 |
+
|
91 |
+
demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview, examples=[[EXAMPLE_INPUTS[0]['prompt']]])
|
92 |
|
|
|
93 |
demo.launch(share=True)
|