Spaces:
Runtime error
Runtime error
File size: 21,480 Bytes
1ed71fa 2d0227c 1ed71fa 2d0227c 7143a04 2d0227c ebc79d8 2d0227c 73f9898 2d0227c ebc79d8 2d0227c 6bb9cf8 2d0227c ebc79d8 2d0227c ebc79d8 2d0227c ebc79d8 2d0227c 51b107b 2d0227c 6bb9cf8 2d0227c 6bb9cf8 2d0227c 6bb9cf8 2d0227c 51b107b ebc79d8 2d0227c ebc79d8 2d0227c 73f9898 2d0227c ebc79d8 73f9898 ebc79d8 2d0227c d562028 2d0227c 07b7087 2d0227c 73f9898 2d0227c 73f9898 2d0227c 73f9898 2d0227c 73f9898 2d0227c 6bb9cf8 ebc79d8 2d0227c ebc79d8 2d0227c df64bf1 2d0227c 51b107b 2d0227c ebc79d8 2d0227c 73f9898 2d0227c ebc79d8 2d0227c ebc79d8 73f9898 51b107b ebc79d8 2d0227c 73f9898 2d0227c d562028 2d0227c d562028 2d0227c d562028 2d0227c d562028 2d0227c d562028 2d0227c d562028 2d0227c d562028 2d0227c d562028 2d0227c d562028 2d0227c d562028 2d0227c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
import streamlit as st
import sys
import openai
import toml
from openai import OpenAI
import pandas as pd
import os
import random
import glob
import re
from io import BytesIO
from six import BytesIO
import cv2
import warnings
warnings.filterwarnings('ignore')
from io import BytesIO
import tempfile
import time
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import seaborn as sns
from PIL import Image
from PIL import ImageColor
from PIL import ImageDraw
from PIL import ImageFont
from PIL import ImageOps
import json
import numpy as np
np.random.seed(42)
import tensorflow as tf
tf.random.set_seed(42)
import tensorflow.keras as k
k.utils.set_random_seed(42) # idem keras
from keras.backend import manual_variable_initialization
manual_variable_initialization(True) # https://github.com/keras-team/keras/issues/4875#issuecomment-296696536
from tensorflow.keras.applications.xception import preprocess_input
from tensorflow.keras.applications.xception import Xception
from scipy.stats import mode
from tensorflow.keras.applications.mobilenet import MobileNet
from tensorflow.keras.applications.mobilenet import preprocess_input as mobilenet_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xception_preprocess
import tensorflow_hub as hub
print("GPU Check: ",tf.config.list_physical_devices('GPU'))
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
@st.cache_resource
def load_models():
#OpenAI elements
#secrets = toml.load(".vscode/streamlit/secrets.toml")
client_d = OpenAI(api_key = st.secrets["OPENAI_API_KEY"])
#client_chat = OpenAI(api_key = st.secrets["OPENAI_API_KEY"])
module_handle = "https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1"
detector_d = hub.load(module_handle).signatures['default'];
file_path = '.vscode/inputs/' # folder with files
Dis_percentage_d = pd.read_csv(os.path.join(file_path,'Spots_Percentage_results.csv'))
Details_d = pd.read_csv(os.path.join(file_path,'Plant_details.csv'))
# Load the TensorFlow Lite model
#model_path = '.vscode/model/model.tflite'
#interpreter = tf.lite.Interpreter(model_path=model_path)
#interpreter.allocate_tensors()
print("Loading CNN Model")
model3_path = '.vscode/model/CNN_0424.keras'
model3_weights_path = '.vscode/model/CNN_weights.hdf5'
cnn_model_d = k.models.load_model(model3_weights_path)
print("Loading Xception Model")
model1_path = '.vscode/model/XCeption_weights.hdf5'
xception_model_d = k.models.load_model(model1_path)
print("Loading Mobilenet Model")
model2_path = '.vscode/model/MobileNet_weights.hdf5'
mobilenet_model_d = k.models.load_model(model2_path)
print("finished loading models")
with open('.vscode/inputs/Xception_0422_labels.json', 'r') as file:
loaded_class_indices = {k: int(v) for k, v in json.load(file).items()}
class_labels_d = {value: key for key, value in loaded_class_indices.items()} # Convert keys to int
#xception_model.weights[-1]
#mobilenet_model.weights[-1]
#cnn_model.weights[-1]
return client_d,detector_d,Dis_percentage_d,Details_d,cnn_model_d,xception_model_d,mobilenet_model_d,class_labels_d
# Loading the models. load_models() methos is cached and will be loaded only once during the initial boot.
client,detector,Dis_percentage,Details,cnn_model,xception_model,mobilenet_model,class_labels = load_models()
# Identify extent of spot or lesion coverage on leaf
def identify_spots_or_lesions(img):
cv_image = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
lab_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2Lab)
l_channel, a_channel, b_channel = cv2.split(lab_image)
blur = cv2.GaussianBlur(a_channel,(3,3),0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
# Morphological clean-up
kernel = np.ones((3,3), np.uint8)
cleaned = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1) # Opening = erosion followed by dilation
edges = cv2.Canny(cleaned,100,300)
# Filter and contours
contours, _ = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
max_area = 18000
filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) < max_area]
# Calculate the percentage of spots/lesions
spot_pixels = sum(cv2.contourArea(cnt) for cnt in filtered_contours)
total_pixels = edges.shape[0] * edges.shape[1]
percentage_spots = (spot_pixels / total_pixels)*100
st.write(f"Percentage of spots/lesions: {percentage_spots:.2f}%")
# Draw filtered contours
contoured_image = cv2.drawContours(cv_image.copy(), filtered_contours, -1, (0, 255, 0), 1)
# Visualization
mfig = plt.figure(figsize=(25, 8))
plt.subplot(1, 5, 1)
plt.imshow(cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB))
plt.title('Original Image')
plt.subplot(1, 5, 2)
plt.imshow(a_channel, cmap='gray')
plt.title('LAB - A channel')
plt.subplot(1, 5, 3)
plt.imshow(edges, cmap='gray')
plt.title('Edge Detection')
plt.subplot(1, 5, 4)
plt.imshow(cleaned, cmap='gray')
plt.title('Thresholded & Cleaned')
plt.subplot(1, 5, 5)
plt.imshow(cv2.cvtColor(contoured_image, cv2.COLOR_BGR2RGB))
plt.title('Spots or Lesions Identified')
#plt.show()
st.pyplot(mfig)
return(percentage_spots)
# Plot disease percentage
def plot_dis_percentage(row, percentage):
# Determine the range category for the title
if percentage < row['Q1']:
category = 'Mild'
color = 'yellow'
elif row['Q1'] <= percentage <= row['Q3']:
category = 'Moderate'
color = 'orange'
else:
category = 'Severe'
color = 'darkred'
# Normalize the data to the range of [0, 1]
min_val = row['min']
max_val = row['max']
range_val = max_val - min_val
percentage_norm = (percentage - min_val) / range_val
# Create a figure and a set of subplots
fig, ax = plt.subplots(figsize=(6, 1))
# Create the ranges for Low, Medium, and High
ax.axhline(0, xmin=0, xmax=(row['Q1'] - min_val) / range_val, color='yellow', linewidth=4, label='Mild')
ax.axhline(0, xmin=(row['Q1'] - min_val) / range_val, xmax=(row['Q3'] - min_val) / range_val, color='orange', linewidth=4, label='Moderate')
ax.axhline(0, xmin=(row['Q3'] - min_val) / range_val, xmax=1, color='darkred', linewidth=4, label='Severe')
# Plot the actual percentage as an arrow
ax.annotate('', xy=(percentage_norm, 0.1), xytext=(percentage_norm, -0.1),
arrowprops=dict(facecolor=color, shrink=0.05, width=1, headwidth=10))
# Set display parameters
ax.set_yticks([]) # No y-ticks
ax.set_xticks([]) # Remove specific percentage figures from the x-axis
ax.set_xlim([0, 1]) # Set x-limits to normalized range
titlet = f'{category} - {row["Plant"]}'
ax.set_title(titlet)
ax.set_xlabel('Value (Normalized)')
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.tight_layout()
st.pyplot(fig)
return titlet
def resize_image(image, target_size=(224, 224)):
return image.resize(target_size)
# Classify the image
def classify_image(image):
# Convert PIL Image to a NumPy array
image_np = np.array(image)
# Preprocess the image as needed
resized_image = cv2.resize(image_np, (224, 224), interpolation=cv2.INTER_LINEAR)
img_array = np.array(resized_image, dtype='float32')
img_array = np.expand_dims(img_array, axis=0)
img_batch = np.tile(img_array, (32, 1, 1, 1))
# preprocess_input from Xception to scale the image to -1 to +1
#img_array = preprocess_input(img_array)
mobilenet_input = mobilenet_preprocess(np.copy(img_batch))
xception_input = xception_preprocess(np.copy(img_batch))
cnn_input = img_batch / 255.0 # normalization for generic CNN model
# Predict using the models
mobilenet_preds = mobilenet_model(mobilenet_input, training = False)
xception_preds = xception_model(xception_input, training = False)
cnn_preds = cnn_model(cnn_input, training = False)
# Get the most likely class index from predictions
mobilenet_class = np.argmax(mobilenet_preds, axis=1)
xception_class = np.argmax(xception_preds, axis=1)
cnn_class = np.argmax(cnn_preds, axis=1)
# --------------------------------
# mean probabilities from each model
averaged_probs = (mobilenet_preds + xception_preds + cnn_preds) / 3
averaged_probs_np = averaged_probs.numpy()
# top two most likely class indices
top_two_probs_indices = np.argsort(-averaged_probs_np, axis=1)[:, :2]
top_class_index = top_two_probs_indices[:, 0]
second_class_index = top_two_probs_indices[:, 1]
top_class_prob = np.max(averaged_probs_np, axis=1)
second_class_prob = averaged_probs_np[np.arange(top_class_index.size), second_class_index]
predicted_class_name = class_labels[top_class_index[0]]
second_class_name = class_labels[second_class_index[0]]
# --------------------------------
st.write("Image class:", predicted_class_name)
st.write(f"Confidence: {top_class_prob[0]:.2%}")
if top_class_prob[0] < 0.999: # threshold close to 1 to handle floating-point precision issues
st.write("Second predicted class:", second_class_name)
st.write(f"Second class confidence: {second_class_prob[0]:.3%}")
else:
st.write("Second predicted class: None")
if "healthy" in predicted_class_name:
st.write(f"{predicted_class_name} is healthy, skipping further analysis.")
return
else:
if "Background_without_leaves" in predicted_class_name:
st.write(f"{predicted_class_name} is not recognized as a plant image, skipping further analysis.")
return
else:
spots_percentage = identify_spots_or_lesions(image)
if predicted_class_name in Dis_percentage['Plant'].values:
row = Dis_percentage.loc[Dis_percentage['Plant'] == predicted_class_name].iloc[0]
severity_disease = plot_dis_percentage(row, spots_percentage)
if predicted_class_name in Details['Plant'].values:
row = Details.loc[Details['Plant'] == predicted_class_name].iloc[0]
#st.write("Disease Identification:", row[4])
st.write("----------------------------------")
#st.write("Management:", row[5])
#st.markdown(severity_disease)
return severity_disease, top_class_prob[0], second_class_name
else:
st.write("No data available for this plant disease in DataFrame.")
return
def display_image(image):
fig = plt.figure(figsize=(12, 6))
plt.grid(False)
plt.imshow(image)
plt.show()
def draw_bounding_box_on_image(image, ymin, xmin, ymax, xmax, color, font, thickness=4, display_str_list=()):
"""Adds a bounding box to an image."""
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
(left, right, top, bottom) = (xmin * im_width, xmax * im_width, ymin * im_height, ymax * im_height)
draw.line([(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=thickness, fill=color)
# height of the display strings added to the top of the bounding
# box exceeds the top of the image - stack below:
display_str_heights = [font.getbbox(ds)[3] for ds in display_str_list]
total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
if top > total_display_str_height:
text_bottom = top
else:
text_bottom = top + total_display_str_height
# Reverse list and print from bottom to top.
for display_str in display_str_list[::-1]:
bbox = font.getbbox(display_str)
text_width, text_height = bbox[2], bbox[3]
margin = np.ceil(0.05 * text_height)
draw.rectangle([(left, text_bottom - text_height - 2 * margin), (left + text_width, text_bottom)], fill=color)
draw.text((left + margin, text_bottom - text_height - margin), display_str, fill="black", font=font)
text_bottom -= text_height - 2 * margin
def draw_boxes(image, boxes, class_names, scores, max_boxes=3, min_score=0.1):
#"""Overlay labeled boxes on an image with formatted scores and label names."""
colors = list(ImageColor.colormap.values())
font = ImageFont.load_default()
# Prepare a list of all detections that meet the score threshold
filtered_boxes = [(boxes[i], scores[i], class_names[i]) for i in range(len(scores)) if scores[i] >= min_score]
# Sort detections based on scores in descending order
filtered_boxes.sort(key=lambda x: x[1], reverse=False)
# Process each box to draw (limited by max_boxes)
for i, (box, score, class_name) in enumerate(filtered_boxes[:max_boxes]):
ymin, xmin, ymax, xmax = tuple(box)
display_str = "{}: {:.2f}%".format(class_name.decode("ascii"), score * 100)
color = colors[hash(class_name) % len(colors)]
draw_bounding_box_on_image( image, ymin, xmin, ymax, xmax, color, font, display_str_list=[display_str])
# Convert PIL Image back to numpy array for display (if necessary)
return np.array(image) if isinstance(image, Image.Image) else image
# ----------------------------------------------------------------------------------------------------//
# Streamlit app
st.title("Image-based plant Disease Identification")
if 'plant_detection_count' not in st.session_state:
st.session_state['plant_detection_count'] = 0
if 'plant_detection_count' not in st.session_state:
st.session_state['plant_disease_class_value'] = ""
if 'chat_mode_on' not in st.session_state:
st.session_state['chat_mode_on'] = 0
def openai_remedy(searchval):
completion = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{"role": "user", "content": "List out the most relevant remediation steps for " + searchval + " in 7 bullet points"}
],
temperature=0.1,
max_tokens=2000,
top_p=0.1
)
st.markdown(completion.choices[0].message.content)
#st.markdown(completion.choices[0].delta.content)
return
def chat_help(plant_disease_class):
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you further with " + plant_disease_class + "?"}]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
if prompt := st.chat_input():
st.session_state.messages.append({"role": "system", "content": "Limit responses to " + plant_disease_class})
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
response = client_d.chat.completions.create(model="gpt-4-turbo", messages=st.session_state.messages)
msg = response.choices[0].message.content
st.session_state.messages.append({"role": "assistant", "content": msg})
st.chat_message("assistant").write(msg)
tab1, tab2, tab3 = st.tabs(["Home", "Solution", "Team"])
#First Tab: Title of Application and description
with tab1:
# Display Plant Care Icon
with st.columns(3)[0]:
st.image(".vscode/inputs/plantIcon.jpg", width=50)
st.markdown("Plant diseases are a significant threat to agricultural productivity worldwide, causing substantial crop losses and economic damage. These diseases can be caused by various factors, including fungi, bacteria, viruses, and environmental stressors. Recognizing the symptoms of plant diseases early is crucial for implementing effective management strategies and minimizing the impact on crop yield and quality.")
# Importance of Early Detection
st.write("""
### Importance of Early Detection
Early detection of plant diseases is paramount for farmers to protect their crops and livelihoods. By identifying diseases at their onset, farmers can implement timely interventions, such as targeted pesticide applications or cultural practices, to prevent the spread of diseases and reduce crop losses. Early detection also reduces the need for excessive chemical inputs, promoting sustainable agriculture practices and environmental stewardship.
""")
# Types of Plant Diseases Detected
with st.columns(3)[0]:
st.image(".vscode/inputs/Plant-disease-classifier-with-ai-blog-banner.jpg", width=400)
st.write("With more than 50% of the population in India still relying on agriculture and with the average farm sizes and incomes being very small, we believe that cost effective solutions for early detection and treatment solutions for disease could significantly improve the quality of produce and lives of farmers. With smartphones being ubiquitous, we believe providing solutions to farmers over a smartphone is the most penetrative form.")
st.write("""
### Training Dataset
Publicly available PlantVillage dataset was used. It consists of 54303 healthy and unhealthy leaf images divided into 38 categories by species and disease.
""")
#Second Tab: Image upload and disease detection and remidy susgestions
with tab2:
# Load and display the image
#uploaded_file = st.file_uploader("Upload Leaf Image...", type=["jpg", "jpeg", "png"], key="uploader")
with st.form("my-form", clear_on_submit=True):
uploaded_file = st.file_uploader("Upload Leaf Image...", type=["jpg", "jpeg", "png"], key="uploader")
submitted = st.form_submit_button("UPLOAD!")
if uploaded_file is not None and st.session_state['chat_mode_on'] == 0:
#st.markdown("Image successfully uploaded!")
st.session_state['plant_detection_count'] = 0
st.session_state['plant_disease_class_value'] = ""
#with st.columns(3)[0]:
st.image(uploaded_file, caption='Image uploaded! Trying to detect objects in it...', width=300)
image = Image.open(uploaded_file)
image_for_drawing = image.copy()
# convert PIL format to TensorFlow format
img = tf.convert_to_tensor(image)
converted_img = tf.image.convert_image_dtype(img, tf.float32)[tf.newaxis, ...] #scales 0-1
start_time = time.time()
result = detector(converted_img)
end_time = time.time()
result = {key: value.numpy() for key, value in result.items()}
#st.write("Found %d objects." % len(result["detection_scores"]))
#st.write("Inference time: ", end_time - start_time)
detection_scores = result["detection_scores"]
detection_class_entities = result["detection_class_entities"]
# Class Detections displays
image_with_boxes = draw_boxes(image_for_drawing, result["detection_boxes"],detection_class_entities, detection_scores)
#display_image(image_with_boxes)
#with st.columns(3)[0]:
st.image(image_with_boxes, caption='Detected objects boxed', width=500)
top_3_idx = np.argsort(-detection_scores)[:3]
plant_detection_count = 0
for idx in top_3_idx:
entity = detection_class_entities[idx].decode('utf-8')
if "Plant" == entity:
plant_detection_count_p = 1
st.session_state['plant_detection_count'] = 1
plant_score = detection_scores[idx]
st.write(f"Plant Probability score using Faster R-CNN Inception Resnet V2 Object detection model : {plant_score:.2%}")
result1 = classify_image(image)
if result1 is not None:
#st.markdown("Result " + result)
new1 = result1[0] + ""
newresult = new1.replace("_"," ")
newresult2 = newresult.replace("-"," ")
st.markdown("Fetching disease management steps for " + ":red[" + newresult2 + "]... :eyes:")
openai_remedy(newresult2)
st.session_state['plant_disease_class_value'] = newresult2
uploaded_file = None
if plant_detection_count == 0:
st.markdown("This is not a plant / leaf image")
else:
print("No file uploaded.")
if st.session_state['plant_detection_count'] == 1 and st.session_state['plant_disease_class_value'] != "" :
st.session_state['chat_mode_on'] = 1
chat_help(st.session_state['plant_disease_class_value'])
# Disclaimer
st.write("""
### Disclaimer
While our disease identification system strives for accuracy and reliability, it is essential to note its limitations. False positives or false negatives may occur, and users are encouraged to consult with agricultural experts for professional advice and decision-making.
""")
# Third Tab
with tab3:
st.markdown("""### CDS Batch 6 - Group 2""")
st.divider()
st.write("- Abhinav Singh")
st.divider()
st.write("- Ankit Kourav")
st.divider()
st.write("- Challoju Anurag.")
st.divider()
st.write("- Madhucchand Darbha")
st.divider()
st.write("- Neha Gupta")
st.divider()
st.write("- Pradeep Rajagopal")
st.divider()
st.write("- Rakesh Vegesana")
st.divider()
st.write("- Sachin Sharma")
st.divider()
st.write("- Shashank Srivastava")
st.divider()
|