File size: 21,480 Bytes
1ed71fa
2d0227c
 
 
 
1ed71fa
 
2d0227c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7143a04
 
2d0227c
 
ebc79d8
2d0227c
 
 
73f9898
2d0227c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebc79d8
 
2d0227c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bb9cf8
2d0227c
 
 
 
 
ebc79d8
2d0227c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebc79d8
 
 
2d0227c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebc79d8
 
2d0227c
51b107b
 
 
 
 
 
2d0227c
6bb9cf8
2d0227c
 
 
6bb9cf8
2d0227c
 
 
 
 
 
 
 
 
 
6bb9cf8
2d0227c
 
 
 
 
 
 
51b107b
ebc79d8
 
 
 
 
 
 
 
2d0227c
 
 
ebc79d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d0227c
 
73f9898
 
 
 
 
 
 
 
 
 
 
2d0227c
ebc79d8
 
 
 
 
 
 
 
 
 
 
 
 
 
73f9898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebc79d8
 
2d0227c
 
 
 
 
d562028
 
2d0227c
 
 
 
 
 
 
 
 
07b7087
 
2d0227c
 
 
73f9898
 
2d0227c
73f9898
 
2d0227c
 
73f9898
2d0227c
 
 
73f9898
 
 
 
 
 
 
 
 
 
 
 
 
2d0227c
 
 
 
 
 
 
 
 
 
 
 
 
 
6bb9cf8
ebc79d8
2d0227c
 
 
 
ebc79d8
 
2d0227c
df64bf1
 
2d0227c
 
51b107b
2d0227c
 
 
ebc79d8
2d0227c
73f9898
 
2d0227c
ebc79d8
2d0227c
 
 
 
 
 
 
ebc79d8
 
73f9898
 
51b107b
 
 
ebc79d8
2d0227c
 
73f9898
 
 
 
 
 
2d0227c
 
 
 
 
 
 
 
 
 
 
 
d562028
2d0227c
 
d562028
2d0227c
 
d562028
2d0227c
 
d562028
2d0227c
 
d562028
2d0227c
 
d562028
2d0227c
 
d562028
2d0227c
 
d562028
2d0227c
 
d562028
2d0227c
 
d562028
2d0227c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
import streamlit as st
import sys
import openai
import toml
from openai import OpenAI


import pandas as pd
import os
import random
import glob
import re
from io import BytesIO
from six import BytesIO
import cv2
import warnings
warnings.filterwarnings('ignore')

from io import BytesIO
import tempfile
import time
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import seaborn as sns
from PIL import Image
from PIL import ImageColor
from PIL import ImageDraw
from PIL import ImageFont
from PIL import ImageOps
import json

import numpy as np
np.random.seed(42)
import tensorflow as tf
tf.random.set_seed(42)

import tensorflow.keras as k
k.utils.set_random_seed(42) # idem keras

from keras.backend import manual_variable_initialization
manual_variable_initialization(True) # https://github.com/keras-team/keras/issues/4875#issuecomment-296696536

from tensorflow.keras.applications.xception import preprocess_input
from tensorflow.keras.applications.xception import Xception
from scipy.stats import mode
from tensorflow.keras.applications.mobilenet import MobileNet
from tensorflow.keras.applications.mobilenet import preprocess_input as mobilenet_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xception_preprocess

import tensorflow_hub as hub

print("GPU Check: ",tf.config.list_physical_devices('GPU'))
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))

@st.cache_resource
def load_models():
    #OpenAI elements
    #secrets = toml.load(".vscode/streamlit/secrets.toml")
    client_d = OpenAI(api_key = st.secrets["OPENAI_API_KEY"])
    #client_chat = OpenAI(api_key = st.secrets["OPENAI_API_KEY"])

    module_handle = "https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1"
    detector_d = hub.load(module_handle).signatures['default'];

    file_path = '.vscode/inputs/' # folder with files
    Dis_percentage_d = pd.read_csv(os.path.join(file_path,'Spots_Percentage_results.csv'))
    Details_d = pd.read_csv(os.path.join(file_path,'Plant_details.csv'))

    # Load the TensorFlow Lite model
    #model_path = '.vscode/model/model.tflite'
    #interpreter = tf.lite.Interpreter(model_path=model_path)
    #interpreter.allocate_tensors()

    print("Loading CNN Model")
    model3_path = '.vscode/model/CNN_0424.keras'
    model3_weights_path = '.vscode/model/CNN_weights.hdf5'
    cnn_model_d = k.models.load_model(model3_weights_path)

    print("Loading Xception Model")
    model1_path = '.vscode/model/XCeption_weights.hdf5'
    xception_model_d = k.models.load_model(model1_path)

    print("Loading Mobilenet Model")
    model2_path = '.vscode/model/MobileNet_weights.hdf5'
    mobilenet_model_d = k.models.load_model(model2_path)
    print("finished loading models")

    with open('.vscode/inputs/Xception_0422_labels.json', 'r') as file:
        loaded_class_indices = {k: int(v) for k, v in json.load(file).items()}
        class_labels_d = {value: key for key, value in loaded_class_indices.items()} # Convert keys to int

    #xception_model.weights[-1]
    #mobilenet_model.weights[-1]
    #cnn_model.weights[-1]

    return client_d,detector_d,Dis_percentage_d,Details_d,cnn_model_d,xception_model_d,mobilenet_model_d,class_labels_d


# Loading the models. load_models() methos is cached and will be loaded only once during the initial boot.
client,detector,Dis_percentage,Details,cnn_model,xception_model,mobilenet_model,class_labels  = load_models()


# Identify extent of spot or lesion coverage on leaf
def identify_spots_or_lesions(img):
    
    cv_image = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
    lab_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2Lab)
    l_channel, a_channel, b_channel = cv2.split(lab_image)
    blur = cv2.GaussianBlur(a_channel,(3,3),0)
    thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]

    # Morphological clean-up
    kernel = np.ones((3,3), np.uint8)
    cleaned = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1) # Opening = erosion followed by dilation
    edges = cv2.Canny(cleaned,100,300)

    # Filter and contours
    contours, _ = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    max_area = 18000
    filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) < max_area]

    # Calculate the percentage of spots/lesions
    spot_pixels = sum(cv2.contourArea(cnt) for cnt in filtered_contours)
    total_pixels = edges.shape[0] * edges.shape[1]
    percentage_spots = (spot_pixels / total_pixels)*100
    st.write(f"Percentage of spots/lesions: {percentage_spots:.2f}%")

    # Draw filtered contours
    contoured_image = cv2.drawContours(cv_image.copy(), filtered_contours, -1, (0, 255, 0), 1)

    # Visualization
    mfig = plt.figure(figsize=(25, 8))
    plt.subplot(1, 5, 1)
    plt.imshow(cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB))
    plt.title('Original Image')

    plt.subplot(1, 5, 2)
    plt.imshow(a_channel, cmap='gray')
    plt.title('LAB - A channel')

    plt.subplot(1, 5, 3)
    plt.imshow(edges, cmap='gray')
    plt.title('Edge Detection')

    plt.subplot(1, 5, 4)
    plt.imshow(cleaned, cmap='gray')
    plt.title('Thresholded & Cleaned')

    plt.subplot(1, 5, 5)
    plt.imshow(cv2.cvtColor(contoured_image, cv2.COLOR_BGR2RGB))
    plt.title('Spots or Lesions Identified')
    #plt.show()
    st.pyplot(mfig)

    return(percentage_spots)


# Plot disease percentage
def plot_dis_percentage(row, percentage):
   # Determine the range category for the title
   if percentage < row['Q1']:
       category = 'Mild'
       color = 'yellow'
   elif row['Q1'] <= percentage <= row['Q3']:
       category = 'Moderate'
       color = 'orange'
   else:
       category = 'Severe'
       color = 'darkred'

   # Normalize the data to the range of [0, 1]
   min_val = row['min']
   max_val = row['max']
   range_val = max_val - min_val
   percentage_norm = (percentage - min_val) / range_val

   # Create a figure and a set of subplots
   fig, ax = plt.subplots(figsize=(6, 1))

   # Create the ranges for Low, Medium, and High
   ax.axhline(0, xmin=0, xmax=(row['Q1'] - min_val) / range_val, color='yellow', linewidth=4, label='Mild')
   ax.axhline(0, xmin=(row['Q1'] - min_val) / range_val, xmax=(row['Q3'] - min_val) / range_val, color='orange', linewidth=4, label='Moderate')
   ax.axhline(0, xmin=(row['Q3'] - min_val) / range_val, xmax=1, color='darkred', linewidth=4, label='Severe')

   # Plot the actual percentage as an arrow
   ax.annotate('', xy=(percentage_norm, 0.1), xytext=(percentage_norm, -0.1),
               arrowprops=dict(facecolor=color, shrink=0.05, width=1, headwidth=10))

   # Set display parameters
   ax.set_yticks([])  # No y-ticks
   ax.set_xticks([])  # Remove specific percentage figures from the x-axis
   ax.set_xlim([0, 1])  # Set x-limits to normalized range
   titlet = f'{category} - {row["Plant"]}'
   ax.set_title(titlet)
   ax.set_xlabel('Value (Normalized)')

   plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
   plt.tight_layout()
   st.pyplot(fig)
   return titlet



def resize_image(image, target_size=(224, 224)):
    return image.resize(target_size)



# Classify the image
def classify_image(image):
    # Convert PIL Image to a NumPy array
    image_np = np.array(image)

    # Preprocess the image as needed
    resized_image = cv2.resize(image_np, (224, 224), interpolation=cv2.INTER_LINEAR)

    img_array = np.array(resized_image, dtype='float32')
    img_array = np.expand_dims(img_array, axis=0)
    img_batch = np.tile(img_array, (32, 1, 1, 1))

    # preprocess_input from Xception to scale the image to -1 to +1
    #img_array = preprocess_input(img_array)

    mobilenet_input = mobilenet_preprocess(np.copy(img_batch))
    xception_input = xception_preprocess(np.copy(img_batch))
    cnn_input = img_batch / 255.0  # normalization for generic CNN model

    # Predict using the models
    mobilenet_preds = mobilenet_model(mobilenet_input, training = False)
    xception_preds = xception_model(xception_input, training = False)
    cnn_preds = cnn_model(cnn_input, training = False)

    # Get the most likely class index from predictions
    mobilenet_class = np.argmax(mobilenet_preds, axis=1)
    xception_class = np.argmax(xception_preds, axis=1)
    cnn_class = np.argmax(cnn_preds, axis=1)

    # --------------------------------
    # mean probabilities from each model
    averaged_probs = (mobilenet_preds + xception_preds + cnn_preds) / 3
    averaged_probs_np = averaged_probs.numpy()

    # top two most likely class indices
    top_two_probs_indices = np.argsort(-averaged_probs_np, axis=1)[:, :2]
    top_class_index = top_two_probs_indices[:, 0]
    second_class_index = top_two_probs_indices[:, 1]
    top_class_prob = np.max(averaged_probs_np, axis=1)
    second_class_prob = averaged_probs_np[np.arange(top_class_index.size), second_class_index]
    predicted_class_name = class_labels[top_class_index[0]]
    second_class_name = class_labels[second_class_index[0]]
    # --------------------------------

    st.write("Image class:", predicted_class_name)
    st.write(f"Confidence: {top_class_prob[0]:.2%}")

    if top_class_prob[0] < 0.999:  # threshold close to 1 to handle floating-point precision issues
        st.write("Second predicted class:", second_class_name)
        st.write(f"Second class confidence: {second_class_prob[0]:.3%}")
    else:
        st.write("Second predicted class: None")

    if "healthy" in predicted_class_name:
        st.write(f"{predicted_class_name} is healthy, skipping further analysis.")
        return
    else:
        if "Background_without_leaves" in predicted_class_name:
            st.write(f"{predicted_class_name} is not recognized as a plant image, skipping further analysis.")
            return
        else:
            spots_percentage = identify_spots_or_lesions(image)
    
    if predicted_class_name in Dis_percentage['Plant'].values:
            row = Dis_percentage.loc[Dis_percentage['Plant'] == predicted_class_name].iloc[0]
            severity_disease = plot_dis_percentage(row, spots_percentage)

            if predicted_class_name in Details['Plant'].values:
                row = Details.loc[Details['Plant'] == predicted_class_name].iloc[0]
                #st.write("Disease Identification:", row[4])
                st.write("----------------------------------")
                #st.write("Management:", row[5])
                #st.markdown(severity_disease)
            return severity_disease, top_class_prob[0], second_class_name
    else:
        st.write("No data available for this plant disease in DataFrame.")

        
    return


def display_image(image):
    fig = plt.figure(figsize=(12, 6))
    plt.grid(False)
    plt.imshow(image)
    plt.show()



def draw_bounding_box_on_image(image, ymin, xmin, ymax, xmax, color, font, thickness=4, display_str_list=()):
  """Adds a bounding box to an image."""
  draw = ImageDraw.Draw(image)
  im_width, im_height = image.size
  (left, right, top, bottom) = (xmin * im_width, xmax * im_width, ymin * im_height, ymax * im_height)
  draw.line([(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=thickness, fill=color)

  # height of the display strings added to the top of the bounding
  # box exceeds the top of the image - stack below:
  display_str_heights = [font.getbbox(ds)[3] for ds in display_str_list]
  total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)

  if top > total_display_str_height:
    text_bottom = top
  else:
    text_bottom = top + total_display_str_height
  # Reverse list and print from bottom to top.
  for display_str in display_str_list[::-1]:
    bbox = font.getbbox(display_str)
    text_width, text_height = bbox[2], bbox[3]
    margin = np.ceil(0.05 * text_height)
    draw.rectangle([(left, text_bottom - text_height - 2 * margin),  (left + text_width, text_bottom)], fill=color)
    draw.text((left + margin, text_bottom - text_height - margin), display_str, fill="black", font=font)
    text_bottom -= text_height - 2 * margin



def draw_boxes(image, boxes, class_names, scores, max_boxes=3, min_score=0.1):
  #"""Overlay labeled boxes on an image with formatted scores and label names."""
  colors = list(ImageColor.colormap.values())

  font = ImageFont.load_default()

  # Prepare a list of all detections that meet the score threshold
  filtered_boxes = [(boxes[i], scores[i], class_names[i]) for i in range(len(scores)) if scores[i] >= min_score]

  # Sort detections based on scores in descending order
  filtered_boxes.sort(key=lambda x: x[1], reverse=False)

  # Process each box to draw (limited by max_boxes)
  for i, (box, score, class_name) in enumerate(filtered_boxes[:max_boxes]):
    ymin, xmin, ymax, xmax = tuple(box)
    display_str = "{}: {:.2f}%".format(class_name.decode("ascii"), score * 100)
    color = colors[hash(class_name) % len(colors)]
    draw_bounding_box_on_image( image, ymin, xmin, ymax, xmax, color, font, display_str_list=[display_str])

  # Convert PIL Image back to numpy array for display (if necessary)
  return np.array(image) if isinstance(image, Image.Image) else image




# ----------------------------------------------------------------------------------------------------//
# Streamlit app

st.title("Image-based plant Disease Identification")

if 'plant_detection_count' not in st.session_state:
    st.session_state['plant_detection_count'] = 0

if 'plant_detection_count' not in st.session_state:
    st.session_state['plant_disease_class_value'] = ""

if 'chat_mode_on' not in st.session_state:
    st.session_state['chat_mode_on'] = 0
    

def openai_remedy(searchval):
        completion = client.chat.completions.create(
                            model="gpt-4-turbo",
                            messages=[
                            {"role": "user", "content": "List out the most relevant remediation steps for " + searchval + " in 7 bullet points"}  
                            ],
                            temperature=0.1,
                            max_tokens=2000,
                            top_p=0.1
                        )
        st.markdown(completion.choices[0].message.content)
        #st.markdown(completion.choices[0].delta.content)
        return

def chat_help(plant_disease_class):
    if "messages" not in st.session_state:
        st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you further with " + plant_disease_class + "?"}]

    for msg in st.session_state.messages:
        st.chat_message(msg["role"]).write(msg["content"])

    if prompt := st.chat_input():
        st.session_state.messages.append({"role": "system", "content": "Limit responses to " + plant_disease_class})
        st.session_state.messages.append({"role": "user", "content": prompt})
        st.chat_message("user").write(prompt)
        response = client_d.chat.completions.create(model="gpt-4-turbo", messages=st.session_state.messages)
        msg = response.choices[0].message.content
        st.session_state.messages.append({"role": "assistant", "content": msg})
        st.chat_message("assistant").write(msg)



tab1, tab2, tab3 = st.tabs(["Home", "Solution", "Team"])


#First Tab: Title of Application and description
with tab1:
    # Display Plant Care Icon
    with st.columns(3)[0]:
        st.image(".vscode/inputs/plantIcon.jpg", width=50)
    st.markdown("Plant diseases are a significant threat to agricultural productivity worldwide, causing substantial crop losses and economic damage. These diseases can be caused by various factors, including fungi, bacteria, viruses, and environmental stressors. Recognizing the symptoms of plant diseases early is crucial for implementing effective management strategies and minimizing the impact on crop yield and quality.")
    # Importance of Early Detection
    st.write("""
### Importance of Early Detection

Early detection of plant diseases is paramount for farmers to protect their crops and livelihoods. By identifying diseases at their onset, farmers can implement timely interventions, such as targeted pesticide applications or cultural practices, to prevent the spread of diseases and reduce crop losses. Early detection also reduces the need for excessive chemical inputs, promoting sustainable agriculture practices and environmental stewardship.
""")
    
    # Types of Plant Diseases Detected
    with st.columns(3)[0]:
        st.image(".vscode/inputs/Plant-disease-classifier-with-ai-blog-banner.jpg", width=400)

    st.write("With more than 50% of the population in India still relying on agriculture and with the average farm sizes and incomes being very small, we believe that cost effective solutions for early detection and treatment solutions for disease could significantly improve the quality of produce and lives of farmers. With smartphones being ubiquitous, we believe providing solutions to farmers over a smartphone is the most penetrative form.")

    st.write("""
### Training Dataset

Publicly available PlantVillage dataset was used. It consists of 54303 healthy and unhealthy leaf images divided into 38 categories by species and disease.
""")


    
#Second Tab: Image upload and disease detection and remidy susgestions
with tab2: 
    # Load and display the image
    #uploaded_file = st.file_uploader("Upload Leaf Image...", type=["jpg", "jpeg", "png"], key="uploader")
    
    with st.form("my-form", clear_on_submit=True):
        uploaded_file = st.file_uploader("Upload Leaf Image...", type=["jpg", "jpeg", "png"], key="uploader")
        submitted = st.form_submit_button("UPLOAD!")

    if uploaded_file is not None and st.session_state['chat_mode_on'] == 0:
        #st.markdown("Image successfully uploaded!")
        st.session_state['plant_detection_count'] = 0
        st.session_state['plant_disease_class_value'] = ""
       
        #with st.columns(3)[0]:
        st.image(uploaded_file, caption='Image uploaded! Trying to detect objects in it...', width=300)
        image = Image.open(uploaded_file)

        image_for_drawing = image.copy()

        # convert PIL format to TensorFlow format
        img = tf.convert_to_tensor(image)
        converted_img = tf.image.convert_image_dtype(img, tf.float32)[tf.newaxis, ...] #scales 0-1

        start_time = time.time()
        result = detector(converted_img)
        end_time = time.time()

        result = {key: value.numpy() for key, value in result.items()}

        #st.write("Found %d objects." % len(result["detection_scores"]))
        #st.write("Inference time: ", end_time - start_time)

        detection_scores = result["detection_scores"]
        detection_class_entities = result["detection_class_entities"]

        # Class Detections displays
        image_with_boxes = draw_boxes(image_for_drawing, result["detection_boxes"],detection_class_entities, detection_scores)
        #display_image(image_with_boxes)
        #with st.columns(3)[0]:
        st.image(image_with_boxes, caption='Detected objects boxed', width=500)

        top_3_idx = np.argsort(-detection_scores)[:3]
        plant_detection_count = 0

        for idx in top_3_idx:
            entity = detection_class_entities[idx].decode('utf-8')

            if "Plant" == entity:
                plant_detection_count_p = 1
                st.session_state['plant_detection_count'] = 1
                plant_score = detection_scores[idx]
                st.write(f"Plant Probability score using Faster R-CNN Inception Resnet V2 Object detection model :  {plant_score:.2%}")
                result1 = classify_image(image)

                if result1 is not None:
                    #st.markdown("Result " + result)
                    new1 = result1[0] + ""
                    newresult = new1.replace("_"," ")
                    newresult2 = newresult.replace("-"," ")
                    st.markdown("Fetching disease management steps for " + ":red[" + newresult2 + "]... :eyes:")
                    openai_remedy(newresult2)
                    st.session_state['plant_disease_class_value'] = newresult2
                    uploaded_file = None

        if plant_detection_count == 0:
            st.markdown("This is not a plant / leaf image")
                    
    else:
        print("No file uploaded.")

    if st.session_state['plant_detection_count'] == 1 and st.session_state['plant_disease_class_value'] != "" :
        st.session_state['chat_mode_on'] = 1
        chat_help(st.session_state['plant_disease_class_value'])

        
    # Disclaimer
    st.write("""
### Disclaimer

While our disease identification system strives for accuracy and reliability, it is essential to note its limitations. False positives or false negatives may occur, and users are encouraged to consult with agricultural experts for professional advice and decision-making.
""")
    



# Third Tab
with tab3:
    st.markdown("""### CDS Batch 6 - Group 2""")
    st.divider()

    st.write("- Abhinav Singh")
    st.divider()  
    
    st.write("- Ankit Kourav")
    st.divider()  

    st.write("- Challoju Anurag.")
    st.divider()  

    st.write("- Madhucchand Darbha")
    st.divider()  

    st.write("- Neha Gupta")
    st.divider()  

    st.write("- Pradeep Rajagopal")
    st.divider()  

    st.write("- Rakesh Vegesana")
    st.divider()  

    st.write("- Sachin Sharma")
    st.divider()  

    st.write("- Shashank Srivastava")
    st.divider()