isunnyrock commited on
Commit
2d0227c
1 Parent(s): 93a325e

First main updates to app file

Browse files
Files changed (1) hide show
  1. app.py +516 -1
app.py CHANGED
@@ -1,4 +1,519 @@
1
  import streamlit as st
 
 
 
 
2
 
3
 
4
- st.markdown("Crop losses due to diseases pose a significant threat to food security worldwide. Traditional methods of disease detection are often labor-intensive and time-consuming, leading to delayed diagnosis and ineffective treatments. Leveraging deep learning techniques, this app aims to help farmers detect plant diseases and suggest remidial measures, by uploading images of the infected leaves")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import sys
3
+ import openai
4
+ import toml
5
+ from openai import OpenAI
6
 
7
 
8
+ import pandas as pd
9
+ import os
10
+ import random
11
+ import glob
12
+ import re
13
+ from io import BytesIO
14
+ from six import BytesIO
15
+ import cv2
16
+ import warnings
17
+ warnings.filterwarnings('ignore')
18
+
19
+ from io import BytesIO
20
+ import tempfile
21
+ import time
22
+ import matplotlib.pyplot as plt
23
+ import matplotlib.colors as mcolors
24
+ import seaborn as sns
25
+ from PIL import Image
26
+ from PIL import ImageColor
27
+ from PIL import ImageDraw
28
+ from PIL import ImageFont
29
+ from PIL import ImageOps
30
+ import json
31
+
32
+ import numpy as np
33
+ np.random.seed(42)
34
+ import tensorflow as tf
35
+ tf.random.set_seed(42)
36
+
37
+ import tensorflow.keras as k
38
+ k.utils.set_random_seed(42) # idem keras
39
+
40
+ from keras.backend import manual_variable_initialization
41
+ manual_variable_initialization(True) # https://github.com/keras-team/keras/issues/4875#issuecomment-296696536
42
+
43
+ from tensorflow.keras.applications.xception import preprocess_input
44
+ from tensorflow.keras.applications.xception import Xception
45
+ from scipy.stats import mode
46
+ from tensorflow.keras.applications.mobilenet import MobileNet
47
+ from tensorflow.keras.applications.mobilenet import preprocess_input as mobilenet_preprocess
48
+ from tensorflow.keras.applications.xception import preprocess_input as xception_preprocess
49
+
50
+ import tensorflow_hub as hub
51
+
52
+
53
+ @st.cache_resource
54
+ def load_models_etc():
55
+ #OpenAI elements
56
+ #secrets = toml.load(".vscode/streamlit/secrets.toml")
57
+ #client_d = OpenAI(api_key = secrets["OPENAI_API_KEY"])
58
+ client_d = OpenAI(api_key = st.secrets["OPENAI_API_KEY"])
59
+
60
+ module_handle = "https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1"
61
+ detector_d = hub.load(module_handle).signatures['default'];
62
+
63
+ file_path = '.vscode/inputs/' # folder with files
64
+ Dis_percentage_d = pd.read_csv(os.path.join(file_path,'Spots_Percentage_results.csv'))
65
+ Details_d = pd.read_csv(os.path.join(file_path,'Plant_details.csv'))
66
+
67
+ # Load the TensorFlow Lite model
68
+ #model_path = '.vscode/model/model.tflite'
69
+ #interpreter = tf.lite.Interpreter(model_path=model_path)
70
+ #interpreter.allocate_tensors()
71
+
72
+ print("Loading CNN Model")
73
+ model3_path = '.vscode/model/CNN_0424.keras'
74
+ model3_weights_path = '.vscode/model/CNN_weights.hdf5'
75
+ cnn_model_d = k.models.load_model(model3_weights_path)
76
+
77
+ print("Loading Xception Model")
78
+ model1_path = '.vscode/model/XCeption_weights.hdf5'
79
+ xception_model_d = k.models.load_model(model1_path)
80
+
81
+ print("Loading Mobilenet Model")
82
+ model2_path = '.vscode/model/MobileNet_weights.hdf5'
83
+ mobilenet_model_d = k.models.load_model(model2_path)
84
+ print("finished loading models")
85
+
86
+ with open('.vscode/inputs/Xception_0422_labels.json', 'r') as file:
87
+ loaded_class_indices = {k: int(v) for k, v in json.load(file).items()}
88
+ class_labels_d = {value: key for key, value in loaded_class_indices.items()} # Convert keys to int
89
+
90
+ #xception_model.weights[-1]
91
+ #mobilenet_model.weights[-1]
92
+ #cnn_model.weights[-1]
93
+
94
+ return client_d,detector_d,Dis_percentage_d,Details_d,cnn_model_d,xception_model_d,mobilenet_model_d,class_labels_d
95
+
96
+
97
+ client,detector,Dis_percentage,Details,cnn_model,xception_model,mobilenet_model,class_labels = load_models_etc()
98
+
99
+
100
+ # Identify extent of spot or lesion coverage on leaf
101
+ def identify_spots_or_lesions(img):
102
+
103
+ cv_image = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
104
+ lab_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2Lab)
105
+ l_channel, a_channel, b_channel = cv2.split(lab_image)
106
+ blur = cv2.GaussianBlur(a_channel,(3,3),0)
107
+ thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
108
+
109
+ # Morphological clean-up
110
+ kernel = np.ones((3,3), np.uint8)
111
+ cleaned = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1) # Opening = erosion followed by dilation
112
+ edges = cv2.Canny(cleaned,100,300)
113
+
114
+ # Filter and contours
115
+ contours, _ = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
116
+ max_area = 18000
117
+ filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) < max_area]
118
+
119
+ # Calculate the percentage of spots/lesions
120
+ spot_pixels = sum(cv2.contourArea(cnt) for cnt in filtered_contours)
121
+ total_pixels = edges.shape[0] * edges.shape[1]
122
+ percentage_spots = (spot_pixels / total_pixels)*100
123
+ print(f"Percentage of spots/lesions: {percentage_spots:.2f}%")
124
+
125
+ # Draw filtered contours
126
+ contoured_image = cv2.drawContours(cv_image.copy(), filtered_contours, -1, (0, 255, 0), 1)
127
+
128
+ # Visualization
129
+ plt.figure(figsize=(25, 8))
130
+ plt.subplot(1, 5, 1)
131
+ plt.imshow(cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB))
132
+ plt.title('Original Image')
133
+
134
+ plt.subplot(1, 5, 2)
135
+ plt.imshow(a_channel, cmap='gray')
136
+ plt.title('LAB - A channel')
137
+
138
+ plt.subplot(1, 5, 3)
139
+ plt.imshow(edges, cmap='gray')
140
+ plt.title('Edge Detection')
141
+
142
+ plt.subplot(1, 5, 4)
143
+ plt.imshow(cleaned, cmap='gray')
144
+ plt.title('Thresholded & Cleaned')
145
+
146
+ plt.subplot(1, 5, 5)
147
+ plt.imshow(cv2.cvtColor(contoured_image, cv2.COLOR_BGR2RGB))
148
+ plt.title('Spots or Lesions Identified')
149
+ plt.show()
150
+ return(percentage_spots)
151
+
152
+
153
+ # Plot disease percentage
154
+ def plot_dis_percentage(row, percentage):
155
+ # Determine the range category for the title
156
+ if percentage < row['Q1']:
157
+ category = 'Mild'
158
+ color = 'yellow'
159
+ elif row['Q1'] <= percentage <= row['Q3']:
160
+ category = 'Moderate'
161
+ color = 'orange'
162
+ else:
163
+ category = 'Severe'
164
+ color = 'darkred'
165
+
166
+ # Normalize the data to the range of [0, 1]
167
+ min_val = row['min']
168
+ max_val = row['max']
169
+ range_val = max_val - min_val
170
+ percentage_norm = (percentage - min_val) / range_val
171
+
172
+ # Create a figure and a set of subplots
173
+ fig, ax = plt.subplots(figsize=(6, 1))
174
+
175
+ # Create the ranges for Low, Medium, and High
176
+ ax.axhline(0, xmin=0, xmax=(row['Q1'] - min_val) / range_val, color='yellow', linewidth=4, label='Mild')
177
+ ax.axhline(0, xmin=(row['Q1'] - min_val) / range_val, xmax=(row['Q3'] - min_val) / range_val, color='orange', linewidth=4, label='Moderate')
178
+ ax.axhline(0, xmin=(row['Q3'] - min_val) / range_val, xmax=1, color='darkred', linewidth=4, label='Severe')
179
+
180
+ # Plot the actual percentage as an arrow
181
+ ax.annotate('', xy=(percentage_norm, 0.1), xytext=(percentage_norm, -0.1),
182
+ arrowprops=dict(facecolor=color, shrink=0.05, width=1, headwidth=10))
183
+
184
+ # Set display parameters
185
+ ax.set_yticks([]) # No y-ticks
186
+ ax.set_xticks([]) # Remove specific percentage figures from the x-axis
187
+ ax.set_xlim([0, 1]) # Set x-limits to normalized range
188
+ titlet = f'{category} - {row["Plant"]}'
189
+ ax.set_title(titlet)
190
+ ax.set_xlabel('Value (Normalized)')
191
+
192
+ plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
193
+ plt.tight_layout()
194
+ st.pyplot(fig)
195
+ return titlet
196
+
197
+
198
+
199
+ def resize_image(image, target_size=(224, 224)):
200
+ return image.resize(target_size)
201
+
202
+
203
+
204
+ # Classify the image
205
+ def classify_image(image):
206
+ # Convert PIL Image to a NumPy array
207
+ image_np = np.array(image)
208
+
209
+ # Preprocess the image as needed
210
+ resized_image = cv2.resize(image_np, (224, 224), interpolation=cv2.INTER_LINEAR)
211
+
212
+ img_array = np.array(resized_image, dtype='float32')
213
+ img_array = np.expand_dims(img_array, axis=0)
214
+ img_batch = np.tile(img_array, (32, 1, 1, 1))
215
+
216
+ # preprocess_input from Xception to scale the image to -1 to +1
217
+ #img_array = preprocess_input(img_array)
218
+
219
+ # Perform inference using the TensorFlow Lite model
220
+ #interpreter.set_tensor(interpreter.get_input_details()[0]['index'], img_array)
221
+ #interpreter.invoke()
222
+ #prediction = interpreter.get_tensor(interpreter.get_output_details()[0]['index'])
223
+
224
+
225
+ mobilenet_input = mobilenet_preprocess(np.copy(img_batch))
226
+ xception_input = xception_preprocess(np.copy(img_batch))
227
+ cnn_input = img_batch / 255.0 # normalization for generic CNN model
228
+
229
+ # Predict using the models
230
+ mobilenet_preds = mobilenet_model(mobilenet_input, training = False)
231
+ xception_preds = xception_model(xception_input, training = False)
232
+ cnn_preds = cnn_model(cnn_input, training = False)
233
+
234
+
235
+ # Get the most likely class index from predictions
236
+ mobilenet_class = np.argmax(mobilenet_preds, axis=1)
237
+ xception_class = np.argmax(xception_preds, axis=1)
238
+ cnn_class = np.argmax(cnn_preds, axis=1)
239
+
240
+ # --------------------------------
241
+ # mean probabilities from each model
242
+ averaged_probs = (mobilenet_preds + xception_preds + cnn_preds) / 3
243
+ averaged_probs_np = averaged_probs.numpy()
244
+
245
+ # top two most likely class indices
246
+ top_two_probs_indices = np.argsort(-averaged_probs_np, axis=1)[:, :2]
247
+ top_class_index = top_two_probs_indices[:, 0]
248
+ second_class_index = top_two_probs_indices[:, 1]
249
+ top_class_prob = np.max(averaged_probs_np, axis=1)
250
+ second_class_prob = averaged_probs_np[np.arange(top_class_index.size), second_class_index]
251
+ predicted_class_name = class_labels[top_class_index[0]]
252
+ second_class_name = class_labels[second_class_index[0]]
253
+
254
+ # --------------------------------
255
+
256
+ if top_class_prob[0] < 0.999: # threshold close to 1 to handle floating-point precision issues
257
+ print("Second predicted class:", second_class_name)
258
+ print(f"Second class confidence: {second_class_prob[0]:.3%}")
259
+ else:
260
+ print("Second predicted class: None")
261
+
262
+ if "healthy" in predicted_class_name:
263
+ print(f"{predicted_class_name} is healthy, skipping further analysis.")
264
+ return
265
+ else:
266
+ if "Background_without_leaves" in predicted_class_name:
267
+ print(f"{predicted_class_name} is not recognized as a plant image, skipping further analysis.")
268
+ return
269
+ else:
270
+ spots_percentage = identify_spots_or_lesions(image)
271
+
272
+
273
+ if predicted_class_name in Dis_percentage['Plant'].values:
274
+ row = Dis_percentage.loc[Dis_percentage['Plant'] == predicted_class_name].iloc[0]
275
+ severity_disease = plot_dis_percentage(row, spots_percentage)
276
+
277
+ if predicted_class_name in Details['Plant'].values:
278
+ row = Details.loc[Details['Plant'] == predicted_class_name].iloc[0]
279
+ st.write("Disease Identification:", row[4])
280
+ st.write("----------------------------------")
281
+ #st.write("Management:", row[5])
282
+ #st.markdown(severity_disease)
283
+ return severity_disease, top_class_prob[0], second_class_name
284
+ else:
285
+ st.write("No data available for this plant disease in DataFrame.")
286
+ return
287
+
288
+
289
+
290
+
291
+ # Streamlit app
292
+
293
+ tab1, tab2, tab3 = st.tabs(["Home", "Solution", "Team"])
294
+
295
+
296
+
297
+ #First Tab: Title of Application and description
298
+ with tab1:
299
+ st.title("Plant Disease Identification")
300
+ # Display Plant Care Icon
301
+ st.image(".vscode/inputs/plantIcon.jpg", width=100)
302
+ st.markdown("Plant diseases are a significant threat to agricultural productivity worldwide, causing substantial crop losses and economic damage. These diseases can be caused by various factors, including fungi, bacteria, viruses, and environmental stressors. Recognizing the symptoms of plant diseases early is crucial for implementing effective management strategies and minimizing the impact on crop yield and quality.")
303
+ # Importance of Early Detection
304
+ st.write("""
305
+ ### Importance of Early Detection
306
+
307
+ Early detection of plant diseases is paramount for farmers to protect their crops and livelihoods. By identifying diseases at their onset, farmers can implement timely interventions, such as targeted pesticide applications or cultural practices, to prevent the spread of diseases and reduce crop losses. Early detection also reduces the need for excessive chemical inputs, promoting sustainable agriculture practices and environmental stewardship.
308
+ """)
309
+
310
+ # Types of Plant Diseases Detected
311
+ st.image(".vscode/inputs/Plant-disease-classifier-with-ai-blog-banner.jpg", width=700)
312
+
313
+ st.write("With more than 50% of the population in India still relying on agriculture and with the average farm sizes and incomes being very small, we believe that cost effective solutions for early detection and treatment solutions for disease could significantly improve the quality of produce and lives of farmers. With smartphones being ubiquitous, we believe providing solutions to farmers over a smartphone is the most penetrative form.")
314
+
315
+
316
+
317
+
318
+
319
+ #Second Tab: Image upload and disease detection and remidy susgestions
320
+ with tab2:
321
+ st.title("Plant classification, Disease detection and management")
322
+
323
+ # Load and display the image
324
+ uploaded_file = st.file_uploader("Upload Leaf Image...", type=["jpg", "jpeg", "png"], key="uploader")
325
+
326
+
327
+ if uploaded_file is not None:
328
+
329
+ print("Image successfully uploaded!")
330
+ # Read the uploaded image file
331
+ st.image(uploaded_file, caption='Uploaded Image', use_column_width=True)
332
+ image = Image.open(uploaded_file)
333
+
334
+ image_for_drawing = image.copy()
335
+
336
+ # convert PIL format to TensorFlow format
337
+ img = tf.convert_to_tensor(image)
338
+ converted_img = tf.image.convert_image_dtype(img, tf.float32)[tf.newaxis, ...] #scales 0-1
339
+
340
+ start_time = time.time()
341
+ result = detector(converted_img)
342
+ end_time = time.time()
343
+
344
+ result = {key: value.numpy() for key, value in result.items()}
345
+
346
+ print("Found %d objects." % len(result["detection_scores"]))
347
+ print("Inference time: ", end_time - start_time)
348
+
349
+ detection_scores = result["detection_scores"]
350
+ detection_class_entities = result["detection_class_entities"]
351
+
352
+ #image_with_boxes = draw_boxes(image_for_drawing, result["detection_boxes"],detection_class_entities, detection_scores)
353
+
354
+ #display_image(image_with_boxes)
355
+
356
+ top_3_idx = np.argsort(-detection_scores)[:3]
357
+
358
+ for idx in top_3_idx:
359
+ entity = detection_class_entities[idx].decode('utf-8')
360
+ if "Plant" == entity:
361
+ plant_score = detection_scores[idx]
362
+ print(f"Plant probability score: {plant_score:.2%}")
363
+ result1 = classify_image(image)
364
+
365
+ if result1 is not None:
366
+ #st.markdown("Result " + result)
367
+ new1 = result1[0] + ""
368
+ newresult = new1.replace("_"," ")
369
+ newresult2 = newresult.replace("-"," ")
370
+ st.markdown("Searching disease management steps for " + ":red[" + newresult2 + "]... :eyes:")
371
+ completion = client.chat.completions.create(
372
+ model="gpt-4-turbo",
373
+ messages=[
374
+ {"role": "user", "content": "List out the most relevant remediation steps for " + newresult2 + " in 7 bullet points"}
375
+ ],
376
+ temperature=0.1,
377
+ max_tokens=2000,
378
+ top_p=0.1
379
+ )
380
+ st.markdown(completion.choices[0].message.content)
381
+ #st.markdown(completion.choices[0].delta.content)
382
+ else:
383
+ print("No file uploaded.")
384
+
385
+
386
+ # Disclaimer
387
+ st.write("""
388
+ ### Disclaimer
389
+
390
+ While our disease identification system strives for accuracy and reliability, it is essential to note its limitations. False positives or false negatives may occur, and users are encouraged to consult with agricultural experts for professional advice and decision-making.
391
+ """)
392
+
393
+
394
+
395
+
396
+
397
+
398
+
399
+
400
+ # Third Tab
401
+ with tab3:
402
+ st.title("CDS Batch 6 - Group 2:")
403
+ st.divider()
404
+
405
+ st.write("Abhinav Singh")
406
+ st.divider()
407
+
408
+ st.write("Ankit Kourav")
409
+ st.divider()
410
+
411
+ st.write("Challoju Anurag.")
412
+ st.divider()
413
+
414
+ st.write("Madhucchand Darbha")
415
+ st.divider()
416
+
417
+ st.write("Neha Gupta")
418
+ st.divider()
419
+
420
+ st.write("Pradeep Rajagopal")
421
+ st.divider()
422
+
423
+ st.write("Rakesh Vegesana")
424
+ st.divider()
425
+
426
+ st.write("Sachin Sharma")
427
+ st.divider()
428
+
429
+ st.write("Shashank Srivastava")
430
+ st.divider()
431
+
432
+
433
+
434
+
435
+
436
+ def display_image(image):
437
+ fig = plt.figure(figsize=(12, 6))
438
+ plt.grid(False)
439
+ plt.imshow(image)
440
+ plt.show()
441
+
442
+
443
+ def draw_bounding_box_on_image(image,
444
+ ymin,
445
+ xmin,
446
+ ymax,
447
+ xmax,
448
+ color,
449
+ font,
450
+ thickness=4,
451
+ display_str_list=()):
452
+ """Adds a bounding box to an image."""
453
+ draw = ImageDraw.Draw(image)
454
+ im_width, im_height = image.size
455
+ (left, right, top, bottom) = (xmin * im_width, xmax * im_width,
456
+ ymin * im_height, ymax * im_height)
457
+ draw.line([(left, top), (left, bottom), (right, bottom), (right, top),
458
+ (left, top)],
459
+ width=thickness,
460
+ fill=color)
461
+
462
+ # height of the display strings added to the top of the bounding
463
+ # box exceeds the top of the image - stack below:
464
+ display_str_heights = [font.getbbox(ds)[3] for ds in display_str_list]
465
+ total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
466
+
467
+ if top > total_display_str_height:
468
+ text_bottom = top
469
+ else:
470
+ text_bottom = top + total_display_str_height
471
+ # Reverse list and print from bottom to top.
472
+ for display_str in display_str_list[::-1]:
473
+ bbox = font.getbbox(display_str)
474
+ text_width, text_height = bbox[2], bbox[3]
475
+ margin = np.ceil(0.05 * text_height)
476
+ draw.rectangle([(left, text_bottom - text_height - 2 * margin),
477
+ (left + text_width, text_bottom)],
478
+ fill=color)
479
+ draw.text((left + margin, text_bottom - text_height - margin),
480
+ display_str,
481
+ fill="black",
482
+ font=font)
483
+ text_bottom -= text_height - 2 * margin
484
+
485
+
486
+
487
+ def draw_boxes(image, boxes, class_names, scores, max_boxes=3, min_score=0.1):
488
+ """Overlay labeled boxes on an image with formatted scores and label names."""
489
+ colors = list(ImageColor.colormap.values())
490
+
491
+ try:
492
+ font = ImageFont.truetype("/usr/share/fonts/truetype/liberation/LiberationSansNarrow-Regular.ttf", 15)
493
+ except IOError:
494
+ print("Font not found, using default font.")
495
+ font = ImageFont.load_default()
496
+
497
+ # Prepare a list of all detections that meet the score threshold
498
+ filtered_boxes = [(boxes[i], scores[i], class_names[i]) for i in range(len(scores)) if scores[i] >= min_score]
499
+
500
+ # Sort detections based on scores in descending order
501
+ filtered_boxes.sort(key=lambda x: x[1], reverse=False)
502
+
503
+ # Process each box to draw (limited by max_boxes)
504
+ for i, (box, score, class_name) in enumerate(filtered_boxes[:max_boxes]):
505
+ ymin, xmin, ymax, xmax = tuple(box)
506
+ display_str = "{}: {:.2f}%".format(class_name.decode("ascii"), score * 100)
507
+ color = colors[hash(class_name) % len(colors)]
508
+ draw_bounding_box_on_image(
509
+ image,
510
+ ymin,
511
+ xmin,
512
+ ymax,
513
+ xmax,
514
+ color,
515
+ font,
516
+ display_str_list=[display_str])
517
+
518
+ # Convert PIL Image back to numpy array for display (if necessary)
519
+ return np.array(image) if isinstance(image, Image.Image) else image