Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,567 Bytes
1e1c50f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
# Copyright (c) 2024 Jaerin Lee
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import concurrent.futures
import time
from typing import Any, Callable, List, Literal, Tuple, Union
from PIL import Image
import numpy as np
import torch
import torch.nn.functional as F
import torch.cuda.amp as amp
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from diffusers import (
DiffusionPipeline,
StableDiffusionPipeline,
StableDiffusionXLPipeline,
)
def seed_everything(seed: int) -> None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def load_model(
model_key: str,
sd_version: Literal['1.5', 'xl'],
device: torch.device,
dtype: torch.dtype,
) -> torch.nn.Module:
if model_key.endswith('.safetensors'):
if sd_version == '1.5':
pipeline = StableDiffusionPipeline
elif sd_version == 'xl':
pipeline = StableDiffusionXLPipeline
else:
raise ValueError(f'Stable Diffusion version {sd_version} not supported.')
return pipeline.from_single_file(model_key, torch_dtype=dtype).to(device)
try:
return DiffusionPipeline.from_pretrained(model_key, variant='fp16', torch_dtype=dtype).to(device)
except:
return DiffusionPipeline.from_pretrained(model_key, variant=None, torch_dtype=dtype).to(device)
def get_cutoff(cutoff: float = None, scale: float = None) -> float:
if cutoff is not None:
return cutoff
if scale is not None and cutoff is None:
return 0.5 / scale
raise ValueError('Either one of `cutoff`, or `scale` should be specified.')
def get_scale(cutoff: float = None, scale: float = None) -> float:
if scale is not None:
return scale
if cutoff is not None and scale is None:
return 0.5 / cutoff
raise ValueError('Either one of `cutoff`, or `scale` should be specified.')
def filter_2d_by_kernel_1d(x: torch.Tensor, k: torch.Tensor) -> torch.Tensor:
assert len(k.shape) in (1,), 'Kernel size should be one of (1,).'
# assert len(k.shape) in (1, 2), 'Kernel size should be one of (1, 2).'
b, c, h, w = x.shape
ks = k.shape[-1]
k = k.view(1, 1, -1).repeat(c, 1, 1)
x = x.permute(0, 2, 1, 3)
x = x.reshape(b * h, c, w)
x = F.pad(x, (ks // 2, (ks - 1) // 2), mode='replicate')
x = F.conv1d(x, k, groups=c)
x = x.reshape(b, h, c, w).permute(0, 3, 2, 1).reshape(b * w, c, h)
x = F.pad(x, (ks // 2, (ks - 1) // 2), mode='replicate')
x = F.conv1d(x, k, groups=c)
x = x.reshape(b, w, c, h).permute(0, 2, 3, 1)
return x
def filter_2d_by_kernel_2d(x: torch.Tensor, k: torch.Tensor) -> torch.Tensor:
assert len(k.shape) in (2, 3), 'Kernel size should be one of (2, 3).'
x = F.pad(x, (
k.shape[-2] // 2, (k.shape[-2] - 1) // 2,
k.shape[-1] // 2, (k.shape[-1] - 1) // 2,
), mode='replicate')
b, c, _, _ = x.shape
if len(k.shape) == 2 or (len(k.shape) == 3 and k.shape[0] == 1):
k = k.view(1, 1, *k.shape[-2:]).repeat(c, 1, 1, 1)
x = F.conv2d(x, k, groups=c)
elif len(k.shape) == 3:
assert k.shape[0] == b, \
'The number of kernels should match the batch size.'
k = k.unsqueeze(1)
x = F.conv2d(x.permute(1, 0, 2, 3), k, groups=b).permute(1, 0, 2, 3)
return x
@amp.autocast(False)
def filter_by_kernel(
x: torch.Tensor,
k: torch.Tensor,
is_batch: bool = False,
) -> torch.Tensor:
k_dim = len(k.shape)
if k_dim == 1 or k_dim == 2 and is_batch:
return filter_2d_by_kernel_1d(x, k)
elif k_dim == 2 or k_dim == 3 and is_batch:
return filter_2d_by_kernel_2d(x, k)
else:
raise ValueError('Kernel size should be one of (1, 2, 3).')
def gen_gauss_lowpass_filter_2d(
std: torch.Tensor,
window_size: int = None,
) -> torch.Tensor:
# Gaussian kernel size is odd in order to preserve the center.
if window_size is None:
window_size = (
2 * int(np.ceil(3 * std.max().detach().cpu().numpy())) + 1)
y = torch.arange(
window_size, dtype=std.dtype, device=std.device
).view(-1, 1).repeat(1, window_size)
grid = torch.stack((y.t(), y), dim=-1)
grid -= 0.5 * (window_size - 1) # (W, W)
var = (std * std).unsqueeze(-1).unsqueeze(-1)
distsq = (grid * grid).sum(dim=-1).unsqueeze(0).repeat(*std.shape, 1, 1)
k = torch.exp(-0.5 * distsq / var)
k /= k.sum(dim=(-2, -1), keepdim=True)
return k
def gaussian_lowpass(
x: torch.Tensor,
std: Union[float, Tuple[float], torch.Tensor] = None,
cutoff: Union[float, torch.Tensor] = None,
scale: Union[float, torch.Tensor] = None,
) -> torch.Tensor:
if std is None:
cutoff = get_cutoff(cutoff, scale)
std = 0.5 / (np.pi * cutoff)
if isinstance(std, (float, int)):
std = (std, std)
if isinstance(std, torch.Tensor):
"""Using nn.functional.conv2d with Gaussian kernels built in runtime is
80% faster than transforms.functional.gaussian_blur for individual
items.
(in GPU); However, in CPU, the result is exactly opposite. But you
won't gonna run this on CPU, right?
"""
if len(list(s for s in std.shape if s != 1)) >= 2:
raise NotImplementedError(
'Anisotropic Gaussian filter is not currently available.')
# k.shape == (B, W, W).
k = gen_gauss_lowpass_filter_2d(std=std.view(-1))
if k.shape[0] == 1:
return filter_by_kernel(x, k[0], False)
else:
return filter_by_kernel(x, k, True)
else:
# Gaussian kernel size is odd in order to preserve the center.
window_size = tuple(2 * int(np.ceil(3 * s)) + 1 for s in std)
return TF.gaussian_blur(x, window_size, std)
def blend(
fg: Union[torch.Tensor, Image.Image],
bg: Union[torch.Tensor, Image.Image],
mask: Union[torch.Tensor, Image.Image],
std: float = 0.0,
) -> Image.Image:
if not isinstance(fg, torch.Tensor):
fg = T.ToTensor()(fg)
if not isinstance(bg, torch.Tensor):
bg = T.ToTensor()(bg)
if not isinstance(mask, torch.Tensor):
mask = (T.ToTensor()(mask) < 0.5).float()[:1]
if std > 0:
mask = gaussian_lowpass(mask[None], std)[0].clip_(0, 1)
return T.ToPILImage()(fg * mask + bg * (1 - mask))
def get_panorama_views(
panorama_height: int,
panorama_width: int,
window_size: int = 64,
) -> tuple[List[Tuple[int]], torch.Tensor]:
stride = window_size // 2
is_horizontal = panorama_width > panorama_height
num_blocks_height = (panorama_height - window_size + stride - 1) // stride + 1
num_blocks_width = (panorama_width - window_size + stride - 1) // stride + 1
total_num_blocks = num_blocks_height * num_blocks_width
half_fwd = torch.linspace(0, 1, (window_size + 1) // 2)
half_rev = half_fwd.flip(0)
if window_size % 2 == 1:
half_rev = half_rev[1:]
c = torch.cat((half_fwd, half_rev))
one = torch.ones_like(c)
f = c.clone()
f[:window_size // 2] = 1
b = c.clone()
b[-(window_size // 2):] = 1
h = [one] if num_blocks_height == 1 else [f] + [c] * (num_blocks_height - 2) + [b]
w = [one] if num_blocks_width == 1 else [f] + [c] * (num_blocks_width - 2) + [b]
views = []
masks = torch.zeros(total_num_blocks, panorama_height, panorama_width) # (n, h, w)
for i in range(total_num_blocks):
hi, wi = i // num_blocks_width, i % num_blocks_width
h_start = hi * stride
h_end = min(h_start + window_size, panorama_height)
w_start = wi * stride
w_end = min(w_start + window_size, panorama_width)
views.append((h_start, h_end, w_start, w_end))
h_width = h_end - h_start
w_width = w_end - w_start
masks[i, h_start:h_end, w_start:w_end] = h[hi][:h_width, None] * w[wi][None, :w_width]
# Sum of the mask weights at each pixel `masks.sum(dim=1)` must be unity.
return views, masks[None] # (1, n, h, w)
def shift_to_mask_bbox_center(im: torch.Tensor, mask: torch.Tensor, reverse: bool = False) -> List[int]:
h, w = mask.shape[-2:]
device = mask.device
mask = mask.reshape(-1, h, w)
# assert mask.shape[0] == im.shape[0]
h_occupied = mask.sum(dim=-2) > 0
w_occupied = mask.sum(dim=-1) > 0
l = torch.argmax(h_occupied * torch.arange(w, 0, -1).to(device), 1, keepdim=True).cpu()
r = torch.argmax(h_occupied * torch.arange(w).to(device), 1, keepdim=True).cpu()
t = torch.argmax(w_occupied * torch.arange(h, 0, -1).to(device), 1, keepdim=True).cpu()
b = torch.argmax(w_occupied * torch.arange(h).to(device), 1, keepdim=True).cpu()
tb = (t + b + 1) // 2
lr = (l + r + 1) // 2
shifts = (tb - (h // 2), lr - (w // 2))
shifts = torch.cat(shifts, dim=1) # (p, 2)
if reverse:
shifts = shifts * -1
return torch.stack([i.roll(shifts=s.tolist(), dims=(-2, -1)) for i, s in zip(im, shifts)], dim=0)
class Streamer:
def __init__(self, fn: Callable, ema_alpha: float = 0.9) -> None:
self.fn = fn
self.ema_alpha = ema_alpha
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=1)
self.future = self.executor.submit(fn)
self.image = None
self.prev_exec_time = 0
self.ema_exec_time = 0
@property
def throughput(self) -> float:
return 1.0 / self.ema_exec_time if self.ema_exec_time else float('inf')
def timed_fn(self) -> Any:
start = time.time()
res = self.fn()
end = time.time()
self.prev_exec_time = end - start
self.ema_exec_time = self.ema_exec_time * self.ema_alpha + self.prev_exec_time * (1 - self.ema_alpha)
return res
def __call__(self) -> Any:
if self.future.done() or self.image is None:
# get the result (the new image) and start a new task
image = self.future.result()
self.future = self.executor.submit(self.timed_fn)
self.image = image
return image
else:
# if self.fn() is not ready yet, use the previous image
# NOTE: This assumes that we have access to a previously generated image here.
# If there's no previous image (i.e., this is the first invocation), you could fall
# back to some default image or handle it differently based on your requirements.
return self.image |