Spaces:
Runtime error
Runtime error
File size: 13,104 Bytes
24f9881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
"""Miscellaneous utility functions."""
from scipy import ndimage
import base64
import math
import re
from io import BytesIO
import matplotlib
import matplotlib.cm
import numpy as np
import requests
import torch
import torch.distributed as dist
import torch.nn
import torch.nn as nn
import torch.utils.data.distributed
from PIL import Image
from torchvision.transforms import ToTensor
class RunningAverage:
def __init__(self):
self.avg = 0
self.count = 0
def append(self, value):
self.avg = (value + self.count * self.avg) / (self.count + 1)
self.count += 1
def get_value(self):
return self.avg
def denormalize(x):
"""Reverses the imagenet normalization applied to the input.
Args:
x (torch.Tensor - shape(N,3,H,W)): input tensor
Returns:
torch.Tensor - shape(N,3,H,W): Denormalized input
"""
mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(x.device)
std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(x.device)
return x * std + mean
class RunningAverageDict:
"""A dictionary of running averages."""
def __init__(self):
self._dict = None
def update(self, new_dict):
if new_dict is None:
return
if self._dict is None:
self._dict = dict()
for key, value in new_dict.items():
self._dict[key] = RunningAverage()
for key, value in new_dict.items():
self._dict[key].append(value)
def get_value(self):
if self._dict is None:
return None
return {key: value.get_value() for key, value in self._dict.items()}
def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
"""Converts a depth map to a color image.
Args:
value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed
vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None.
vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None.
cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'.
invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99.
invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None.
background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255).
gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False.
value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None.
Returns:
numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4)
"""
if isinstance(value, torch.Tensor):
value = value.detach().cpu().numpy()
value = value.squeeze()
if invalid_mask is None:
invalid_mask = value == invalid_val
mask = np.logical_not(invalid_mask)
# normalize
vmin = np.percentile(value[mask],2) if vmin is None else vmin
vmax = np.percentile(value[mask],85) if vmax is None else vmax
if vmin != vmax:
value = (value - vmin) / (vmax - vmin) # vmin..vmax
else:
# Avoid 0-division
value = value * 0.
# squeeze last dim if it exists
# grey out the invalid values
value[invalid_mask] = np.nan
cmapper = matplotlib.cm.get_cmap(cmap)
if value_transform:
value = value_transform(value)
# value = value / value.max()
value = cmapper(value, bytes=True) # (nxmx4)
# img = value[:, :, :]
img = value[...]
img[invalid_mask] = background_color
# return img.transpose((2, 0, 1))
if gamma_corrected:
# gamma correction
img = img / 255
img = np.power(img, 2.2)
img = img * 255
img = img.astype(np.uint8)
return img
def count_parameters(model, include_all=False):
return sum(p.numel() for p in model.parameters() if p.requires_grad or include_all)
def compute_errors(gt, pred):
"""Compute metrics for 'pred' compared to 'gt'
Args:
gt (numpy.ndarray): Ground truth values
pred (numpy.ndarray): Predicted values
gt.shape should be equal to pred.shape
Returns:
dict: Dictionary containing the following metrics:
'a1': Delta1 accuracy: Fraction of pixels that are within a scale factor of 1.25
'a2': Delta2 accuracy: Fraction of pixels that are within a scale factor of 1.25^2
'a3': Delta3 accuracy: Fraction of pixels that are within a scale factor of 1.25^3
'abs_rel': Absolute relative error
'rmse': Root mean squared error
'log_10': Absolute log10 error
'sq_rel': Squared relative error
'rmse_log': Root mean squared error on the log scale
'silog': Scale invariant log error
"""
thresh = np.maximum((gt / pred), (pred / gt))
a1 = (thresh < 1.25).mean()
a2 = (thresh < 1.25 ** 2).mean()
a3 = (thresh < 1.25 ** 3).mean()
abs_rel = np.mean(np.abs(gt - pred) / gt)
sq_rel = np.mean(((gt - pred) ** 2) / gt)
rmse = (gt - pred) ** 2
rmse = np.sqrt(rmse.mean())
rmse_log = (np.log(gt) - np.log(pred)) ** 2
rmse_log = np.sqrt(rmse_log.mean())
err = np.log(pred) - np.log(gt)
silog = np.sqrt(np.mean(err ** 2) - np.mean(err) ** 2) * 100
log_10 = (np.abs(np.log10(gt) - np.log10(pred))).mean()
return dict(a1=a1, a2=a2, a3=a3, abs_rel=abs_rel, rmse=rmse, log_10=log_10, rmse_log=rmse_log,
silog=silog, sq_rel=sq_rel)
def compute_metrics(gt, pred, interpolate=True, garg_crop=False, eigen_crop=True, dataset='nyu', min_depth_eval=0.1, max_depth_eval=10, **kwargs):
"""Compute metrics of predicted depth maps. Applies cropping and masking as necessary or specified via arguments. Refer to compute_errors for more details on metrics.
"""
if 'config' in kwargs:
config = kwargs['config']
garg_crop = config.garg_crop
eigen_crop = config.eigen_crop
min_depth_eval = config.min_depth_eval
max_depth_eval = config.max_depth_eval
if gt.shape[-2:] != pred.shape[-2:] and interpolate:
pred = nn.functional.interpolate(
pred, gt.shape[-2:], mode='bilinear', align_corners=True)
pred = pred.squeeze().cpu().numpy()
pred[pred < min_depth_eval] = min_depth_eval
pred[pred > max_depth_eval] = max_depth_eval
pred[np.isinf(pred)] = max_depth_eval
pred[np.isnan(pred)] = min_depth_eval
gt_depth = gt.squeeze().cpu().numpy()
valid_mask = np.logical_and(
gt_depth > min_depth_eval, gt_depth < max_depth_eval)
if garg_crop or eigen_crop:
gt_height, gt_width = gt_depth.shape
eval_mask = np.zeros(valid_mask.shape)
if garg_crop:
eval_mask[int(0.40810811 * gt_height):int(0.99189189 * gt_height),
int(0.03594771 * gt_width):int(0.96405229 * gt_width)] = 1
elif eigen_crop:
# print("-"*10, " EIGEN CROP ", "-"*10)
if dataset == 'kitti':
eval_mask[int(0.3324324 * gt_height):int(0.91351351 * gt_height),
int(0.0359477 * gt_width):int(0.96405229 * gt_width)] = 1
else:
# assert gt_depth.shape == (480, 640), "Error: Eigen crop is currently only valid for (480, 640) images"
eval_mask[45:471, 41:601] = 1
else:
eval_mask = np.ones(valid_mask.shape)
valid_mask = np.logical_and(valid_mask, eval_mask)
return compute_errors(gt_depth[valid_mask], pred[valid_mask])
#################################### Model uilts ################################################
def parallelize(config, model, find_unused_parameters=True):
if config.gpu is not None:
torch.cuda.set_device(config.gpu)
model = model.cuda(config.gpu)
config.multigpu = False
if config.distributed:
# Use DDP
config.multigpu = True
config.rank = config.rank * config.ngpus_per_node + config.gpu
dist.init_process_group(backend=config.dist_backend, init_method=config.dist_url,
world_size=config.world_size, rank=config.rank)
config.batch_size = int(config.batch_size / config.ngpus_per_node)
# config.batch_size = 8
config.workers = int(
(config.num_workers + config.ngpus_per_node - 1) / config.ngpus_per_node)
print("Device", config.gpu, "Rank", config.rank, "batch size",
config.batch_size, "Workers", config.workers)
torch.cuda.set_device(config.gpu)
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = model.cuda(config.gpu)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.gpu], output_device=config.gpu,
find_unused_parameters=find_unused_parameters)
elif config.gpu is None:
# Use DP
config.multigpu = True
model = model.cuda()
model = torch.nn.DataParallel(model)
return model
#################################################################################################
#####################################################################################################
class colors:
'''Colors class:
Reset all colors with colors.reset
Two subclasses fg for foreground and bg for background.
Use as colors.subclass.colorname.
i.e. colors.fg.red or colors.bg.green
Also, the generic bold, disable, underline, reverse, strikethrough,
and invisible work with the main class
i.e. colors.bold
'''
reset = '\033[0m'
bold = '\033[01m'
disable = '\033[02m'
underline = '\033[04m'
reverse = '\033[07m'
strikethrough = '\033[09m'
invisible = '\033[08m'
class fg:
black = '\033[30m'
red = '\033[31m'
green = '\033[32m'
orange = '\033[33m'
blue = '\033[34m'
purple = '\033[35m'
cyan = '\033[36m'
lightgrey = '\033[37m'
darkgrey = '\033[90m'
lightred = '\033[91m'
lightgreen = '\033[92m'
yellow = '\033[93m'
lightblue = '\033[94m'
pink = '\033[95m'
lightcyan = '\033[96m'
class bg:
black = '\033[40m'
red = '\033[41m'
green = '\033[42m'
orange = '\033[43m'
blue = '\033[44m'
purple = '\033[45m'
cyan = '\033[46m'
lightgrey = '\033[47m'
def printc(text, color):
print(f"{color}{text}{colors.reset}")
############################################
def get_image_from_url(url):
response = requests.get(url)
img = Image.open(BytesIO(response.content)).convert("RGB")
return img
def url_to_torch(url, size=(384, 384)):
img = get_image_from_url(url)
img = img.resize(size, Image.ANTIALIAS)
img = torch.from_numpy(np.asarray(img)).float()
img = img.permute(2, 0, 1)
img.div_(255)
return img
def pil_to_batched_tensor(img):
return ToTensor()(img).unsqueeze(0)
def save_raw_16bit(depth, fpath="raw.png"):
if isinstance(depth, torch.Tensor):
depth = depth.squeeze().cpu().numpy()
assert isinstance(depth, np.ndarray), "Depth must be a torch tensor or numpy array"
assert depth.ndim == 2, "Depth must be 2D"
depth = depth * 256 # scale for 16-bit png
depth = depth.astype(np.uint16)
depth = Image.fromarray(depth)
depth.save(fpath)
print("Saved raw depth to", fpath) |