File size: 16,338 Bytes
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Shariq Farooq Bhat

import json
import os

from zoedepth.utils.easydict import EasyDict as edict

from zoedepth.utils.arg_utils import infer_type
import pathlib
import platform

ROOT = pathlib.Path(__file__).parent.parent.resolve()

HOME_DIR = os.path.expanduser("~")

COMMON_CONFIG = {
    "save_dir": os.path.expanduser("~/shortcuts/monodepth3_checkpoints"),
    "project": "ZoeDepth",
    "tags": '',
    "notes": "",
    "gpu": None,
    "root": ".",
    "uid": None,
    "print_losses": False
}

DATASETS_CONFIG = {
    "kitti": {
        "dataset": "kitti",
        "min_depth": 0.001,
        "max_depth": 80,
        "data_path": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/raw"),
        "gt_path": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/gts"),
        "filenames_file": "./train_test_inputs/kitti_eigen_train_files_with_gt.txt",
        "input_height": 352,
        "input_width": 1216,  # 704
        "data_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/raw"),
        "gt_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/gts"),
        "filenames_file_eval": "./train_test_inputs/kitti_eigen_test_files_with_gt.txt",

        "min_depth_eval": 1e-3,
        "max_depth_eval": 80,

        "do_random_rotate": True,
        "degree": 1.0,
        "do_kb_crop": True,
        "garg_crop": True,
        "eigen_crop": False,
        "use_right": False
    },
    "kitti_test": {
        "dataset": "kitti",
        "min_depth": 0.001,
        "max_depth": 80,
        "data_path": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/raw"),
        "gt_path": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/gts"),
        "filenames_file": "./train_test_inputs/kitti_eigen_train_files_with_gt.txt",
        "input_height": 352,
        "input_width": 1216,
        "data_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/raw"),
        "gt_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/kitti/gts"),
        "filenames_file_eval": "./train_test_inputs/kitti_eigen_test_files_with_gt.txt",

        "min_depth_eval": 1e-3,
        "max_depth_eval": 80,

        "do_random_rotate": False,
        "degree": 1.0,
        "do_kb_crop": True,
        "garg_crop": True,
        "eigen_crop": False,
        "use_right": False
    },
    "nyu": {
        "dataset": "nyu",
        "avoid_boundary": False,
        "min_depth": 1e-3,   # originally 0.1
        "max_depth": 10,
        "data_path": os.path.join(HOME_DIR, "shortcuts/datasets/nyu_depth_v2/sync/"),
        "gt_path": os.path.join(HOME_DIR, "shortcuts/datasets/nyu_depth_v2/sync/"),
        "filenames_file": "./train_test_inputs/nyudepthv2_train_files_with_gt.txt",
        "input_height": 480,
        "input_width": 640,
        "data_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/nyu_depth_v2/official_splits/test/"),
        "gt_path_eval": os.path.join(HOME_DIR, "shortcuts/datasets/nyu_depth_v2/official_splits/test/"),
        "filenames_file_eval": "./train_test_inputs/nyudepthv2_test_files_with_gt.txt",
        "min_depth_eval": 1e-3,
        "max_depth_eval": 10,
        "min_depth_diff": -10,
        "max_depth_diff": 10,

        "do_random_rotate": True,
        "degree": 1.0,
        "do_kb_crop": False,
        "garg_crop": False,
        "eigen_crop": True
    },
    "ibims": {
        "dataset": "ibims",
        "ibims_root": os.path.join(HOME_DIR, "shortcuts/datasets/ibims/ibims1_core_raw/"),
        "eigen_crop": True,
        "garg_crop": False,
        "do_kb_crop": False,
        "min_depth_eval": 0,
        "max_depth_eval": 10,
        "min_depth": 1e-3,
        "max_depth": 10
    },
    "sunrgbd": {
        "dataset": "sunrgbd",
        "sunrgbd_root": os.path.join(HOME_DIR, "shortcuts/datasets/SUNRGBD/test/"),
        "eigen_crop": True,
        "garg_crop": False,
        "do_kb_crop": False,
        "min_depth_eval": 0,
        "max_depth_eval": 8,
        "min_depth": 1e-3,
        "max_depth": 10
    },
    "diml_indoor": {
        "dataset": "diml_indoor",
        "diml_indoor_root": os.path.join(HOME_DIR, "shortcuts/datasets/diml_indoor_test/"),
        "eigen_crop": True,
        "garg_crop": False,
        "do_kb_crop": False,
        "min_depth_eval": 0,
        "max_depth_eval": 10,
        "min_depth": 1e-3,
        "max_depth": 10
    },
    "diml_outdoor": {
        "dataset": "diml_outdoor",
        "diml_outdoor_root": os.path.join(HOME_DIR, "shortcuts/datasets/diml_outdoor_test/"),
        "eigen_crop": False,
        "garg_crop": True,
        "do_kb_crop": False,
        "min_depth_eval": 2,
        "max_depth_eval": 80,
        "min_depth": 1e-3,
        "max_depth": 80
    },
    "diode_indoor": {
        "dataset": "diode_indoor",
        "diode_indoor_root": os.path.join(HOME_DIR, "shortcuts/datasets/diode_indoor/"),
        "eigen_crop": True,
        "garg_crop": False,
        "do_kb_crop": False,
        "min_depth_eval": 1e-3,
        "max_depth_eval": 10,
        "min_depth": 1e-3,
        "max_depth": 10
    },
    "diode_outdoor": {
        "dataset": "diode_outdoor",
        "diode_outdoor_root": os.path.join(HOME_DIR, "shortcuts/datasets/diode_outdoor/"),
        "eigen_crop": False,
        "garg_crop": True,
        "do_kb_crop": False,
        "min_depth_eval": 1e-3,
        "max_depth_eval": 80,
        "min_depth": 1e-3,
        "max_depth": 80
    },
    "hypersim_test": {
        "dataset": "hypersim_test",
        "hypersim_test_root": os.path.join(HOME_DIR, "shortcuts/datasets/hypersim_test/"),
        "eigen_crop": True,
        "garg_crop": False,
        "do_kb_crop": False,
        "min_depth_eval": 1e-3,
        "max_depth_eval": 80,
        "min_depth": 1e-3,
        "max_depth": 10
    },
    "vkitti": {
        "dataset": "vkitti",
        "vkitti_root": os.path.join(HOME_DIR, "shortcuts/datasets/vkitti_test/"),
        "eigen_crop": False,
        "garg_crop": True,
        "do_kb_crop": True,
        "min_depth_eval": 1e-3,
        "max_depth_eval": 80,
        "min_depth": 1e-3,
        "max_depth": 80
    },
    "vkitti2": {
        "dataset": "vkitti2",
        "vkitti2_root": os.path.join(HOME_DIR, "shortcuts/datasets/vkitti2/"),
        "eigen_crop": False,
        "garg_crop": True,
        "do_kb_crop": True,
        "min_depth_eval": 1e-3,
        "max_depth_eval": 80,
        "min_depth": 1e-3,
        "max_depth": 80,
    },
    "ddad": {
        "dataset": "ddad",
        "ddad_root": os.path.join(HOME_DIR, "shortcuts/datasets/ddad/ddad_val/"),
        "eigen_crop": False,
        "garg_crop": True,
        "do_kb_crop": True,
        "min_depth_eval": 1e-3,
        "max_depth_eval": 80,
        "min_depth": 1e-3,
        "max_depth": 80,
    },
}

ALL_INDOOR = ["nyu", "ibims", "sunrgbd", "diode_indoor", "hypersim_test"]
ALL_OUTDOOR = ["kitti", "diml_outdoor", "diode_outdoor",  "vkitti2", "ddad"]
ALL_EVAL_DATASETS = ALL_INDOOR + ALL_OUTDOOR

COMMON_TRAINING_CONFIG = {
    "dataset": "nyu",
    "distributed": True,
    "workers": 16,
    "clip_grad": 0.1,
    "use_shared_dict": False,
    "shared_dict": None,
    "use_amp": False,

    "aug": True,
    "random_crop": False,
    "random_translate": False,
    "translate_prob": 0.2,
    "max_translation": 100,

    "validate_every": 0.25,
    "log_images_every": 0.1,
    "prefetch": False,
}


def flatten(config, except_keys=('bin_conf')):
    def recurse(inp):
        if isinstance(inp, dict):
            for key, value in inp.items():
                if key in except_keys:
                    yield (key, value)
                if isinstance(value, dict):
                    yield from recurse(value)
                else:
                    yield (key, value)

    return dict(list(recurse(config)))


def split_combined_args(kwargs):
    """Splits the arguments that are combined with '__' into multiple arguments.
       Combined arguments should have equal number of keys and values.
       Keys are separated by '__' and Values are separated with ';'.
       For example, '__n_bins__lr=256;0.001'

    Args:
        kwargs (dict): key-value pairs of arguments where key-value is optionally combined according to the above format. 

    Returns:
        dict: Parsed dict with the combined arguments split into individual key-value pairs.
    """
    new_kwargs = dict(kwargs)
    for key, value in kwargs.items():
        if key.startswith("__"):
            keys = key.split("__")[1:]
            values = value.split(";")
            assert len(keys) == len(
                values), f"Combined arguments should have equal number of keys and values. Keys are separated by '__' and Values are separated with ';'. For example, '__n_bins__lr=256;0.001. Given (keys,values) is ({keys}, {values})"
            for k, v in zip(keys, values):
                new_kwargs[k] = v
    return new_kwargs


def parse_list(config, key, dtype=int):
    """Parse a list of values for the key if the value is a string. The values are separated by a comma. 
    Modifies the config in place.
    """
    if key in config:
        if isinstance(config[key], str):
            config[key] = list(map(dtype, config[key].split(',')))
        assert isinstance(config[key], list) and all([isinstance(e, dtype) for e in config[key]]
                                                     ), f"{key} should be a list of values dtype {dtype}. Given {config[key]} of type {type(config[key])} with values of type {[type(e) for e in config[key]]}."


def get_model_config(model_name, model_version=None):
    """Find and parse the .json config file for the model.

    Args:
        model_name (str): name of the model. The config file should be named config_{model_name}[_{model_version}].json under the models/{model_name} directory.
        model_version (str, optional): Specific config version. If specified config_{model_name}_{model_version}.json is searched for and used. Otherwise config_{model_name}.json is used. Defaults to None.

    Returns:
        easydict: the config dictionary for the model.
    """
    config_fname = f"config_{model_name}_{model_version}.json" if model_version is not None else f"config_{model_name}.json"
    config_file = os.path.join(ROOT, "models", model_name, config_fname)
    if not os.path.exists(config_file):
        return None

    with open(config_file, "r") as f:
        config = edict(json.load(f))

    # handle dictionary inheritance
    # only training config is supported for inheritance
    if "inherit" in config.train and config.train.inherit is not None:
        inherit_config = get_model_config(config.train["inherit"]).train
        for key, value in inherit_config.items():
            if key not in config.train:
                config.train[key] = value
    return edict(config)


def update_model_config(config, mode, model_name, model_version=None, strict=False):
    model_config = get_model_config(model_name, model_version)
    if model_config is not None:
        config = {**config, **
                  flatten({**model_config.model, **model_config[mode]})}
    elif strict:
        raise ValueError(f"Config file for model {model_name} not found.")
    return config


def check_choices(name, value, choices):
    # return  # No checks in dev branch
    if value not in choices:
        raise ValueError(f"{name} {value} not in supported choices {choices}")


KEYS_TYPE_BOOL = ["use_amp", "distributed", "use_shared_dict", "same_lr", "aug", "three_phase",
                  "prefetch", "cycle_momentum"]  # Casting is not necessary as their int casted values in config are 0 or 1


def get_config(model_name, mode='train', dataset=None, **overwrite_kwargs):
    """Main entry point to get the config for the model.

    Args:
        model_name (str): name of the desired model.
        mode (str, optional): "train" or "infer". Defaults to 'train'.
        dataset (str, optional): If specified, the corresponding dataset configuration is loaded as well. Defaults to None.
    
    Keyword Args: key-value pairs of arguments to overwrite the default config.

    The order of precedence for overwriting the config is (Higher precedence first):
        # 1. overwrite_kwargs
        # 2. "config_version": Config file version if specified in overwrite_kwargs. The corresponding config loaded is config_{model_name}_{config_version}.json
        # 3. "version_name": Default Model version specific config specified in overwrite_kwargs. The corresponding config loaded is config_{model_name}_{version_name}.json
        # 4. common_config: Default config for all models specified in COMMON_CONFIG

    Returns:
        easydict: The config dictionary for the model.
    """


    check_choices("Model", model_name, ["zoedepth", "zoedepth_nk"])
    check_choices("Mode", mode, ["train", "infer", "eval"])
    if mode == "train":
        check_choices("Dataset", dataset, ["nyu", "kitti", "mix", None])

    config = flatten({**COMMON_CONFIG, **COMMON_TRAINING_CONFIG})
    config = update_model_config(config, mode, model_name)

    # update with model version specific config
    version_name = overwrite_kwargs.get("version_name", config["version_name"])
    config = update_model_config(config, mode, model_name, version_name)

    # update with config version if specified
    config_version = overwrite_kwargs.get("config_version", None)
    if config_version is not None:
        print("Overwriting config with config_version", config_version)
        config = update_model_config(config, mode, model_name, config_version)

    # update with overwrite_kwargs
    # Combined args are useful for hyperparameter search
    overwrite_kwargs = split_combined_args(overwrite_kwargs)
    config = {**config, **overwrite_kwargs}

    # Casting to bool   # TODO: Not necessary. Remove and test
    for key in KEYS_TYPE_BOOL:
        if key in config:
            config[key] = bool(config[key])

    # Model specific post processing of config
    parse_list(config, "n_attractors")

    # adjust n_bins for each bin configuration if bin_conf is given and n_bins is passed in overwrite_kwargs
    if 'bin_conf' in config and 'n_bins' in overwrite_kwargs:
        bin_conf = config['bin_conf']  # list of dicts
        n_bins = overwrite_kwargs['n_bins']
        new_bin_conf = []
        for conf in bin_conf:
            conf['n_bins'] = n_bins
            new_bin_conf.append(conf)
        config['bin_conf'] = new_bin_conf

    if mode == "train":
        orig_dataset = dataset
        if dataset == "mix":
            dataset = 'nyu'  # Use nyu as default for mix. Dataset config is changed accordingly while loading the dataloader
        if dataset is not None:
            config['project'] = f"MonoDepth3-{orig_dataset}"  # Set project for wandb

    if dataset is not None:
        config['dataset'] = dataset
        config = {**DATASETS_CONFIG[dataset], **config}
        

    config['model'] = model_name
    typed_config = {k: infer_type(v) for k, v in config.items()}
    # add hostname to config
    config['hostname'] = platform.node()
    return edict(typed_config)


def change_dataset(config, new_dataset):
    config.update(DATASETS_CONFIG[new_dataset])
    return config