File size: 3,563 Bytes
24f9881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Shariq Farooq Bhat

import gradio as gr
import numpy as np
import trimesh
from zoedepth.utils.geometry import depth_to_points, create_triangles
from functools import partial
import tempfile


def depth_edges_mask(depth):
    """Returns a mask of edges in the depth map.
    Args:
    depth: 2D numpy array of shape (H, W) with dtype float32.
    Returns:
    mask: 2D numpy array of shape (H, W) with dtype bool.
    """
    # Compute the x and y gradients of the depth map.
    depth_dx, depth_dy = np.gradient(depth)
    # Compute the gradient magnitude.
    depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
    # Compute the edge mask.
    mask = depth_grad > 0.05
    return mask


def predict_depth(model, image):
    depth = model.infer_pil(image)
    return depth

def get_mesh(model, image, keep_edges=False):
    image.thumbnail((1024,1024))  # limit the size of the input image
    depth = predict_depth(model, image)
    pts3d = depth_to_points(depth[None])
    pts3d = pts3d.reshape(-1, 3)

    # Create a trimesh mesh from the points
    # Each pixel is connected to its 4 neighbors
    # colors are the RGB values of the image

    verts = pts3d.reshape(-1, 3)
    image = np.array(image)
    if keep_edges:
        triangles = create_triangles(image.shape[0], image.shape[1])
    else:
        triangles = create_triangles(image.shape[0], image.shape[1], mask=~depth_edges_mask(depth))
    colors = image.reshape(-1, 3)
    mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors)

    # Save as glb
    glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
    glb_path = glb_file.name
    mesh.export(glb_path)
    return glb_path

def create_demo(model):

    gr.Markdown("### Image to 3D mesh")
    gr.Markdown("Convert a single 2D image to a 3D mesh")

    with gr.Row():
        image = gr.Image(label="Input Image", type='pil')
        result = gr.Model3D(label="3d mesh reconstruction", clear_color=[
                                                 1.0, 1.0, 1.0, 1.0])
    
    checkbox = gr.Checkbox(label="Keep occlusion edges", value=False)
    submit = gr.Button("Submit")
    submit.click(partial(get_mesh, model), inputs=[image, checkbox], outputs=[result])
    # examples = gr.Examples(examples=["examples/aerial_beach.jpeg", "examples/mountains.jpeg", "examples/person_1.jpeg", "examples/ancient-carved.jpeg"],
    #                         inputs=[image])