Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 1,871 Bytes
			
			| 5f0e5c0 36a45f4 5f0e5c0 36a45f4 5f0e5c0 b314aff 5f0e5c0 15b93c3 5f0e5c0 d1ca099 0eb2a2b d1ca099 0eb2a2b 5f0e5c0 f9ca340 5f0e5c0 85cdc3d 5f0e5c0 4f40672 39fff43 5f0e5c0 2ac89d4 85cdc3d 2ac89d4 c04c765 5f0e5c0 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | import gradio as gr
import timm
import torch
import torch.nn as nn
from torchvision import datasets, transforms
from PIL import Image
from torch.utils.mobile_optimizer import optimize_for_mobile
model = timm.create_model('resnet50', pretrained=True)
model.fc = torch.nn.Linear(in_features=model.fc.in_features, out_features=5)
path = "epoch_4_Resnet50-0.5contrast.pth"
model.load_state_dict(torch.load(path))
model.eval()
def transform_image(img_sample):
    transform = transforms.Compose([
        transforms.Resize((224, 224)),  # Resize to 224x224
        transforms.ToTensor(),  # Convert PIL image to tensor
        transforms.ColorJitter(contrast=0.5),  # Contrast
        #transforms.RandomAdjustSharpness(sharpness_factor=0.5),
        #transforms.RandomSolarize(threshold=0.75),
        #transforms.RandomAutocontrast(p=1),
    ])
    transformed_img = transform(img_sample)
    return transformed_img
def predict(Image):
    tranformed_img = transform_image(Image)
    model.eval()
    img = transform_image(Image)
    img = img.reshape(1,3,224,224)
    #img = torch.from_numpy(tranformed_img)
    #outputs = model(img)
    #class_out = outputs.argmax(dim=1)
    with torch.no_grad():
        grade = torch.softmax(model(img.float()), dim=1)[0]
    category = ["0 - Normal", "1 - Mild", "2 - Moderate", "3 - Severe", "4 - Proliferative"]
    output_dict = {}
    for cat, value in zip(category, grade):
        output_dict[cat] = value.item()
    return output_dict
image = gr.Image(type="pil")#shape=(224, 224), image_mode="RGB")
label = gr.Label(label="Level")
demo = gr.Interface(
    fn=predict,
    inputs=image,
    outputs=label,
    #examples=["examples/0.png", "examples/1.png", "examples/2.png", "examples/3.png", "examples/4.png"]
    examples=["0.jpeg", "2.jpeg", "4.jpeg"]
    )
if __name__ == "__main__":
    demo.launch(debug=True)
 |