Spaces:
Sleeping
Sleeping
update
Browse files
app.py
CHANGED
|
@@ -30,7 +30,6 @@ def transform_image(img_sample):
|
|
| 30 |
|
| 31 |
def predict(Image):
|
| 32 |
tranformed_img = transform_image(Image)
|
| 33 |
-
"""
|
| 34 |
model.eval()
|
| 35 |
tranformed_img = transform_image(Image)
|
| 36 |
img = torch.from_numpy(tranformed_img)
|
|
@@ -42,18 +41,17 @@ def predict(Image):
|
|
| 42 |
for cat, value in zip(category, grade):
|
| 43 |
output_dict[cat] = value.item()
|
| 44 |
return output_dict
|
| 45 |
-
|
| 46 |
-
return tranformed_img
|
| 47 |
|
| 48 |
|
| 49 |
|
| 50 |
image = gr.Image(type="pil")#shape=(224, 224), image_mode="RGB")
|
| 51 |
-
|
| 52 |
|
| 53 |
demo = gr.Interface(
|
| 54 |
fn=predict,
|
| 55 |
inputs=image,
|
| 56 |
-
outputs=
|
| 57 |
#examples=["examples/0.png", "examples/1.png", "examples/2.png", "examples/3.png", "examples/4.png"]
|
| 58 |
)
|
| 59 |
|
|
|
|
| 30 |
|
| 31 |
def predict(Image):
|
| 32 |
tranformed_img = transform_image(Image)
|
|
|
|
| 33 |
model.eval()
|
| 34 |
tranformed_img = transform_image(Image)
|
| 35 |
img = torch.from_numpy(tranformed_img)
|
|
|
|
| 41 |
for cat, value in zip(category, grade):
|
| 42 |
output_dict[cat] = value.item()
|
| 43 |
return output_dict
|
| 44 |
+
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
|
| 48 |
image = gr.Image(type="pil")#shape=(224, 224), image_mode="RGB")
|
| 49 |
+
label = gr.Label(label="Grade")
|
| 50 |
|
| 51 |
demo = gr.Interface(
|
| 52 |
fn=predict,
|
| 53 |
inputs=image,
|
| 54 |
+
outputs=label,
|
| 55 |
#examples=["examples/0.png", "examples/1.png", "examples/2.png", "examples/3.png", "examples/4.png"]
|
| 56 |
)
|
| 57 |
|