File size: 4,568 Bytes
91b0adc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments, AutoTokenizer\n",
    "from datasets import Dataset\n",
    "import pandas as pd\n",
    "from sklearn.model_selection import train_test_split\n",
    "\n",
    "# Load the dataset\n",
    "file_path = 'train_en.csv'\n",
    "dataset = pd.read_csv(file_path)\n",
    "\n",
    "# Map labels to expected responses\n",
    "label_mapping = {\n",
    "    \"Yes\": 0,\n",
    "    \"No\": 1,\n",
    "    \"It doesn't matter\": 2,\n",
    "    \"Unimportant\": 2,  # Assuming \"unimportant\" is synonymous with \"It doesn't matter\"\n",
    "    \"Incorrect questioning\": 3,\n",
    "    \"Correct answers\": 4\n",
    "}\n",
    "\n",
    "# Apply label mapping\n",
    "dataset['label'] = dataset['label'].map(label_mapping)\n",
    "\n",
    "# Handle NaN values: Drop rows where label is NaN\n",
    "dataset = dataset.dropna(subset=['label'])\n",
    "\n",
    "# Ensure labels are integers\n",
    "dataset['label'] = dataset['label'].astype(int)\n",
    "\n",
    "# Split the dataset into training and validation sets\n",
    "train_df, val_df = train_test_split(dataset, test_size=0.2, random_state=42)\n",
    "\n",
    "# Convert the dataframes to datasets\n",
    "train_dataset = Dataset.from_pandas(train_df)\n",
    "val_dataset = Dataset.from_pandas(val_df)\n",
    "\n",
    "# Load the tokenizer and model\n",
    "model_name = \"google/gemma-2-9b\"\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
    "model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=5)\n",
    "\n",
    "# Tokenize the data\n",
    "def tokenize_function(examples):\n",
    "    return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=128)\n",
    "\n",
    "train_dataset = train_dataset.map(tokenize_function, batched=True)\n",
    "val_dataset = val_dataset.map(tokenize_function, batched=True)\n",
    "\n",
    "# Set the format for PyTorch\n",
    "train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])\n",
    "val_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])\n",
    "\n",
    "# Define training arguments\n",
    "training_args = TrainingArguments(\n",
    "    output_dir='./results',\n",
    "    evaluation_strategy='epoch',\n",
    "    learning_rate=2e-5,\n",
    "    per_device_train_batch_size=8,\n",
    "    per_device_eval_batch_size=8,\n",
    "    num_train_epochs=3,\n",
    "    weight_decay=0.01,\n",
    ")\n",
    "\n",
    "# Initialize the Trainer\n",
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    train_dataset=train_dataset,\n",
    "    eval_dataset=val_dataset,\n",
    ")\n",
    "\n",
    "# Train the model\n",
    "trainer.train()\n",
    "\n",
    "# Save the model\n",
    "model.save_pretrained('trained_gemma_model')\n",
    "tokenizer.save_pretrained('trained_gemma_model')\n",
    "\n",
    "# Evaluate the model\n",
    "trainer.evaluate()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load the trained model and tokenizer\n",
    "model = AutoModelForSequenceClassification.from_pretrained('trained_gemma_model')\n",
    "tokenizer = AutoTokenizer.from_pretrained('trained_gemma_model')\n",
    "\n",
    "# Function to make predictions\n",
    "def predict(texts):\n",
    "    inputs = tokenizer(texts, return_tensors=\"pt\", truncation=True, padding='max_length', max_length=128)\n",
    "    outputs = model(**inputs)\n",
    "    predictions = outputs.logits.argmax(dim=-1).tolist()\n",
    "    return predictions\n",
    "\n",
    "# Apply the predictions to the dataset\n",
    "dataset['predicted_label'] = predict(dataset['text'].tolist())\n",
    "\n",
    "# Map the predicted labels back to the response texts\n",
    "reverse_label_mapping = {v: k for k, v in label_mapping.items()}\n",
    "dataset['predicted_label'] = dataset['predicted_label'].map(reverse_label_mapping)\n",
    "\n",
    "# Save the results\n",
    "dataset.to_csv('gemma-2-9b_predicted_results.csv', index=False)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "name": "python",
   "version": "3.11.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}