Spaces:
Build error
Build error
nicoleathy
commited on
Upload Gemma-2-9b.ipynb
Browse files- competition/Gemma-2-9b.ipynb +132 -0
competition/Gemma-2-9b.ipynb
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments, AutoTokenizer\n",
|
10 |
+
"from datasets import Dataset\n",
|
11 |
+
"import pandas as pd\n",
|
12 |
+
"from sklearn.model_selection import train_test_split\n",
|
13 |
+
"\n",
|
14 |
+
"# Load the dataset\n",
|
15 |
+
"file_path = 'train_en.csv'\n",
|
16 |
+
"dataset = pd.read_csv(file_path)\n",
|
17 |
+
"\n",
|
18 |
+
"# Map labels to expected responses\n",
|
19 |
+
"label_mapping = {\n",
|
20 |
+
" \"Yes\": 0,\n",
|
21 |
+
" \"No\": 1,\n",
|
22 |
+
" \"It doesn't matter\": 2,\n",
|
23 |
+
" \"Unimportant\": 2, # Assuming \"unimportant\" is synonymous with \"It doesn't matter\"\n",
|
24 |
+
" \"Incorrect questioning\": 3,\n",
|
25 |
+
" \"Correct answers\": 4\n",
|
26 |
+
"}\n",
|
27 |
+
"\n",
|
28 |
+
"# Apply label mapping\n",
|
29 |
+
"dataset['label'] = dataset['label'].map(label_mapping)\n",
|
30 |
+
"\n",
|
31 |
+
"# Handle NaN values: Drop rows where label is NaN\n",
|
32 |
+
"dataset = dataset.dropna(subset=['label'])\n",
|
33 |
+
"\n",
|
34 |
+
"# Ensure labels are integers\n",
|
35 |
+
"dataset['label'] = dataset['label'].astype(int)\n",
|
36 |
+
"\n",
|
37 |
+
"# Split the dataset into training and validation sets\n",
|
38 |
+
"train_df, val_df = train_test_split(dataset, test_size=0.2, random_state=42)\n",
|
39 |
+
"\n",
|
40 |
+
"# Convert the dataframes to datasets\n",
|
41 |
+
"train_dataset = Dataset.from_pandas(train_df)\n",
|
42 |
+
"val_dataset = Dataset.from_pandas(val_df)\n",
|
43 |
+
"\n",
|
44 |
+
"# Load the tokenizer and model\n",
|
45 |
+
"model_name = \"google/gemma-2-9b\"\n",
|
46 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
47 |
+
"model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=5)\n",
|
48 |
+
"\n",
|
49 |
+
"# Tokenize the data\n",
|
50 |
+
"def tokenize_function(examples):\n",
|
51 |
+
" return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=128)\n",
|
52 |
+
"\n",
|
53 |
+
"train_dataset = train_dataset.map(tokenize_function, batched=True)\n",
|
54 |
+
"val_dataset = val_dataset.map(tokenize_function, batched=True)\n",
|
55 |
+
"\n",
|
56 |
+
"# Set the format for PyTorch\n",
|
57 |
+
"train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])\n",
|
58 |
+
"val_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])\n",
|
59 |
+
"\n",
|
60 |
+
"# Define training arguments\n",
|
61 |
+
"training_args = TrainingArguments(\n",
|
62 |
+
" output_dir='./results',\n",
|
63 |
+
" evaluation_strategy='epoch',\n",
|
64 |
+
" learning_rate=2e-5,\n",
|
65 |
+
" per_device_train_batch_size=8,\n",
|
66 |
+
" per_device_eval_batch_size=8,\n",
|
67 |
+
" num_train_epochs=3,\n",
|
68 |
+
" weight_decay=0.01,\n",
|
69 |
+
")\n",
|
70 |
+
"\n",
|
71 |
+
"# Initialize the Trainer\n",
|
72 |
+
"trainer = Trainer(\n",
|
73 |
+
" model=model,\n",
|
74 |
+
" args=training_args,\n",
|
75 |
+
" train_dataset=train_dataset,\n",
|
76 |
+
" eval_dataset=val_dataset,\n",
|
77 |
+
")\n",
|
78 |
+
"\n",
|
79 |
+
"# Train the model\n",
|
80 |
+
"trainer.train()\n",
|
81 |
+
"\n",
|
82 |
+
"# Save the model\n",
|
83 |
+
"model.save_pretrained('trained_gemma_model')\n",
|
84 |
+
"tokenizer.save_pretrained('trained_gemma_model')\n",
|
85 |
+
"\n",
|
86 |
+
"# Evaluate the model\n",
|
87 |
+
"trainer.evaluate()"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"execution_count": null,
|
93 |
+
"metadata": {},
|
94 |
+
"outputs": [],
|
95 |
+
"source": [
|
96 |
+
"# Load the trained model and tokenizer\n",
|
97 |
+
"model = AutoModelForSequenceClassification.from_pretrained('trained_gemma_model')\n",
|
98 |
+
"tokenizer = AutoTokenizer.from_pretrained('trained_gemma_model')\n",
|
99 |
+
"\n",
|
100 |
+
"# Function to make predictions\n",
|
101 |
+
"def predict(texts):\n",
|
102 |
+
" inputs = tokenizer(texts, return_tensors=\"pt\", truncation=True, padding='max_length', max_length=128)\n",
|
103 |
+
" outputs = model(**inputs)\n",
|
104 |
+
" predictions = outputs.logits.argmax(dim=-1).tolist()\n",
|
105 |
+
" return predictions\n",
|
106 |
+
"\n",
|
107 |
+
"# Apply the predictions to the dataset\n",
|
108 |
+
"dataset['predicted_label'] = predict(dataset['text'].tolist())\n",
|
109 |
+
"\n",
|
110 |
+
"# Map the predicted labels back to the response texts\n",
|
111 |
+
"reverse_label_mapping = {v: k for k, v in label_mapping.items()}\n",
|
112 |
+
"dataset['predicted_label'] = dataset['predicted_label'].map(reverse_label_mapping)\n",
|
113 |
+
"\n",
|
114 |
+
"# Save the results\n",
|
115 |
+
"dataset.to_csv('gemma-2-9b_predicted_results.csv', index=False)"
|
116 |
+
]
|
117 |
+
}
|
118 |
+
],
|
119 |
+
"metadata": {
|
120 |
+
"kernelspec": {
|
121 |
+
"display_name": "base",
|
122 |
+
"language": "python",
|
123 |
+
"name": "python3"
|
124 |
+
},
|
125 |
+
"language_info": {
|
126 |
+
"name": "python",
|
127 |
+
"version": "3.11.0"
|
128 |
+
}
|
129 |
+
},
|
130 |
+
"nbformat": 4,
|
131 |
+
"nbformat_minor": 2
|
132 |
+
}
|