Spaces:
Runtime error
Runtime error
File size: 22,273 Bytes
dc47947 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import os
import glob
import torch
import cv2
import matplotlib.pyplot as plt
import os
import numpy as np
import torch.fft as fft
import ipdb
import copy
import wget
from midas.model_loader import load_model
import torch.nn.functional as F
first_execution = True
thisdir = os.path.abspath(os.path.dirname(__file__))
class MiDas():
def __init__(self, device, model_type) -> None:
self.device = device
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
model_weights = os.path.join(thisdir, '..' ,f"./weights/{model_type}.pt")
if not os.path.exists(model_weights):
os.makedirs(os.path.dirname(model_weights), exist_ok=True)
if '384' in model_type:
wget.download('https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_large_384.pt', model_weights)
elif '512' in model_type:
wget.download('https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt', model_weights)
else:
assert False, 'please select correct depth estimation model.'
print("Device: %s" % device)
model, transform, net_w, net_h = load_model(
device, model_weights, model_type, optimize=False, height=None, square=False
)
self.model = model
self.transform = transform
self.model_type = model_type
self.net_w = net_w
self.net_h = net_h
def process(
self, device, model, model_type, image, input_size, target_size, optimize, use_camera
):
"""
Run the inference and interpolate.
Args:
device (torch.device): the torch device used
model: the model used for inference
model_type: the type of the model
image: the image fed into the neural network
input_size: the size (width, height) of the neural network input (for OpenVINO)
target_size: the size (width, height) the neural network output is interpolated to
optimize: optimize the model to half-floats on CUDA?
use_camera: is the camera used?
Returns:
the prediction
"""
global first_execution
if "openvino" in model_type:
if first_execution or not use_camera:
# print(
# f" Input resized to {input_size[0]}x{input_size[1]} before entering the encoder"
# )
first_execution = False
sample = [np.reshape(image, (1, 3, *input_size))]
prediction = model(sample)[model.output(0)][0]
prediction = cv2.resize(
prediction, dsize=target_size, interpolation=cv2.INTER_CUBIC
)
else:
sample = torch.from_numpy(image).to(device).unsqueeze(0)
if optimize and device == torch.device("cuda"):
if first_execution:
print(
" Optimization to half-floats activated. Use with caution, because models like Swin require\n"
" float precision to work properly and may yield non-finite depth values to some extent for\n"
" half-floats."
)
sample = sample.to(memory_format=torch.channels_last)
sample = sample.half()
if first_execution or not use_camera:
height, width = sample.shape[2:]
print(f" Input resized to {width}x{height} before entering the encoder")
first_execution = False
prediction = model.forward(sample)
prediction = (
torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=target_size[::-1],
mode="bicubic",
align_corners=False,
)
.squeeze()
.cpu()
.numpy()
)
return prediction
def prediction2depth(self, depth):
bits = 1
if not np.isfinite(depth).all():
depth=np.nan_to_num(depth, nan=0.0, posinf=0.0, neginf=0.0)
print("WARNING: Non-finite depth values present")
depth_min = depth.min()
depth_max = depth.max()
max_val = (2**(8*bits))-1
if depth_max - depth_min > np.finfo("float").eps:
out = max_val * (depth - depth_min) / (depth_max - depth_min)
else:
out = np.zeros(depth.shape, dtype=depth.dtype)
# out = cv2.applyColorMap(np.uint8(out), cv2.COLORMAP_INFERNO)
return out
def calc_R(self, theta_z, theta_x, theta_y):
theta_z, theta_x, theta_y = theta_z/180*np.pi, theta_x/180*np.pi, theta_y/180*np.pi,
Rz = np.array([[np.cos(theta_z), np.sin(theta_z), 0],
[-np.sin(theta_z), np.cos(theta_z), 0],
[0,0,1]])
Rx = np.array([[1,0,0],
[0,np.cos(theta_x), np.sin(theta_x)],
[0, -np.sin(theta_x), np.cos(theta_x)]])
Ry = np.array([[np.cos(theta_y), 0, np.sin(theta_y)],
[0,1,0],
[-np.sin(theta_y), 0, np.cos(theta_y)]])
R = Rz @ Rx @ Ry
return R
def render_new_view(self, img, depth, R, t, K):
h, w, _ = img.shape
new_img = np.zeros_like(img)
for y in range(h):
for x in range(w):
# Back-project
Z = depth[y, x]
X = (x - K[0, 2]) * Z / K[0, 0]
Y = (y - K[1, 2]) * Z / K[1, 1]
point3D = np.array([X, Y, Z, 1])
# Transform
point3D_new = R @ point3D[:3] + t
if point3D_new[2] <= 0: # point is behind the camera
continue
# Project to new view
u = int(K[0, 0] * point3D_new[0] / point3D_new[2] + K[0, 2])
v = int(K[1, 1] * point3D_new[1] / point3D_new[2] + K[1, 2])
if 0 <= u < w and 0 <= v < h:
new_img[v, u] = img[y, x]
return new_img
def wrap_img(self, img, depth_map, K, R, T, target_point=None):
h, w = img.shape[:2]
# Generate grid of coordinates (x, y)
x, y = np.meshgrid(np.arange(w), np.arange(h))
ones = np.ones_like(x)
# Flatten and stack to get homogeneous coordinates
homogeneous_coordinates = np.stack((x.flatten(), y.flatten(), ones.flatten()), axis=1).T
# Inverse intrinsic matrix
K_inv = np.linalg.inv(K)
# Inverse rotation and translation
R_inv = R.T
T_inv = -R_inv @ T
# Project to 3D using depth map
world_coordinates = K_inv @ homogeneous_coordinates
world_coordinates *= depth_map.flatten()
# Apply inverse transformation
transformed_world_coordinates = R_inv @ world_coordinates + T_inv.reshape(-1, 1)
# Project back to 2D
valid = transformed_world_coordinates[2, :] > 0
projected_2D = K @ transformed_world_coordinates
projected_2D /= projected_2D[2, :]
# Initialize map_x and map_y
map_x = np.zeros((h, w), dtype=np.float32)
map_y = np.zeros((h, w), dtype=np.float32)
# Assign valid projection values to map_x and map_y
map_x.flat[valid] = projected_2D[0, valid]
map_y.flat[valid] = projected_2D[1, valid]
# Perform the warping
wrapped_img = cv2.remap(img, map_x, map_y, interpolation=cv2.INTER_LINEAR)
if target_point is None:
return wrapped_img
else:
target_point = (map_x[int(target_point[1]), int(target_point[0])], map_y[int(target_point[1]), int(target_point[0])])
target_point = tuple(max(0, min(511, x)) for x in target_point)
return wrapped_img, target_point
def get_low_high_frequent_tensors(self, x, threshold=4):
dtype = x.dtype
x = x.type(torch.float32)
# FFT
x_freq = fft.fftn(x, dim=(-2, -1))
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
B,C,H,W = x_freq.shape
mask = torch.ones((B, C, H, W)).to(x.device)
crow, ccol = H // 2, W //2
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = 0 # low 0 high 1
x_freq_high = x_freq * mask
x_freq_low = x_freq * (1 - mask)
x_freq_high = fft.ifftshift(x_freq_high, dim=(-2, -1))
x_high = fft.ifftn(x_freq_high, dim=(-2, -1)).real
x_high = x_high.type(dtype)
x_freq_low = fft.ifftshift(x_freq_low, dim=(-2, -1))
x_low = fft.ifftn(x_freq_low, dim=(-2, -1)).real
x_low = x_low.type(dtype)
return x_high, x_low, x_freq_high, x_freq_low, mask
def combine_low_and_high(self, freq_low, freq_high, mask):
freq = freq_high * mask + freq_low * (1-mask)
freq = fft.ifftshift(freq, dim=(-2, -1))
x = fft.ifftn(freq, dim=(-2, -1)).real
return x
def wrap_img_tensor_w_fft(self, img_tensor, depth_tensor,
theta_z=0, theta_x=0, theta_y=-10, T=[0,0,-2], threshold=4):
_, img_tensor, high_freq, low_freq, fft_mask = self.get_low_high_frequent_tensors(img_tensor, threshold)
intrinsic_matrix = np.array([[1000, 0, img_tensor.shape[-1]/2],
[0, 1000, img_tensor.shape[-2]/2],
[0, 0, 1]]) # Example intrinsic matrix
ori_size = None
if depth_tensor.shape[-1] != img_tensor.shape[-1]:
scale = depth_tensor.shape[-1] / img_tensor.shape[-1]
ori_size = (img_tensor.shape[-2], img_tensor.shape[-1])
img_tensor_ori = img_tensor.clone()
# img_tensor = F.interpolate(img_tensor, size=(depth_tensor.shape[-2], depth_tensor.shape[-1]))
depth_tensor = F.interpolate(depth_tensor.unsqueeze(0).unsqueeze(0), size=ori_size, mode='bilinear').squeeze().to(torch.float16)
intrinsic_matrix[0,0] /= scale
intrinsic_matrix[1,1] /= scale
rotation_matrix = self.calc_R(theta_z=theta_z, theta_x=theta_x, theta_y=theta_y)
translation_vector = np.array(T) # Translation vector to shift camera to the right
h,w = img_tensor.shape[2:]
xy_src = np.mgrid[0:h, 0:w].reshape(2, -1)
xy_src_homogeneous = np.vstack((xy_src, np.ones((1, xy_src.shape[1]))))
# Convert to torch tensors
xy_src_homogeneous_tensor = torch.tensor(xy_src_homogeneous, dtype=torch.float16, device=img_tensor.device)
# Compute the coordinates in the world frame
xy_world = torch.inverse(torch.tensor(intrinsic_matrix, dtype=torch.float32, device=img_tensor.device)).to(torch.float16) @ xy_src_homogeneous_tensor
xy_world = xy_world * depth_tensor.view(1, -1)
# Compute the coordinates in the new camera frame
xy_new_cam = torch.inverse(torch.tensor(rotation_matrix, dtype=torch.float32, device=img_tensor.device)).to(torch.float16) @ (xy_world - torch.tensor(translation_vector, dtype=torch.float16, device=img_tensor.device).view(3,1))
# Compute the coordinates in the new image
xy_dst_homogeneous = torch.tensor(intrinsic_matrix, dtype=torch.float16, device=img_tensor.device) @ xy_new_cam
xy_dst = xy_dst_homogeneous[:2, :] / xy_dst_homogeneous[2, :]
# Reshape to a 2D grid and normalize to [-1, 1]
xy_dst = xy_dst.reshape(2, h, w)
xy_dst = (xy_dst - torch.tensor([[w/2.0], [h/2.0]], dtype=torch.float16, device=img_tensor.device).unsqueeze(-1)) / torch.tensor([[w/2.0], [h/2.0]], dtype=torch.float16, device=img_tensor.device).unsqueeze(-1)
xy_dst = torch.flip(xy_dst, [0])
xy_dst = xy_dst.permute(1, 2, 0)
# Perform the warping
wrapped_img = F.grid_sample(img_tensor, xy_dst.to(torch.float16)[None], align_corners=True, mode='bilinear', padding_mode='reflection')
wrapped_freq = fft.fftn(wrapped_img, dim=(-2, -1))
wrapped_freq = fft.fftshift(wrapped_freq, dim=(-2, -1))
wrapped_img = self.combine_low_and_high(wrapped_freq, high_freq, fft_mask)
return wrapped_img
def wrap_img_tensor_w_fft_ext(self, img_tensor, depth_tensor, K,R,T, threshold=4):
_, img_tensor, high_freq, low_freq, fft_mask = self.get_low_high_frequent_tensors(img_tensor, threshold)
ori_size = None
if depth_tensor.shape[-1] != img_tensor.shape[-1]:
scale = depth_tensor.shape[-1] / img_tensor.shape[-1]
ori_size = (img_tensor.shape[-2], img_tensor.shape[-1])
# img_tensor = F.interpolate(img_tensor, size=(depth_tensor.shape[-2], depth_tensor.shape[-1]))
depth_tensor = F.interpolate(depth_tensor.unsqueeze(0).unsqueeze(0), size=ori_size, mode='bilinear').squeeze().to(torch.float16)
intrinsic = copy.deepcopy(K)
intrinsic = K / scale
intrinsic[2,2] = 1
h,w = img_tensor.shape[2:]
xy_src = np.mgrid[0:h, 0:w].reshape(2, -1)
xy_src_homogeneous = np.vstack((xy_src, np.ones((1, xy_src.shape[1]))))
# Convert to torch tensors
xy_src_homogeneous_tensor = torch.tensor(xy_src_homogeneous, dtype=img_tensor.dtype, device=img_tensor.device)
# Compute the coordinates in the world frame
# xy_world = torch.inverse(torch.tensor(K, dtype=torch.float32, device=img_tensor.device)).to(torch.float16) @ xy_src_homogeneous_tensor
xy_world = torch.tensor(np.linalg.inv(intrinsic)).to(img_tensor.dtype).to(img_tensor.device) @ xy_src_homogeneous_tensor
xy_world = xy_world * depth_tensor.view(1, -1)
# Compute the coordinates in the new camera frame
xy_new_cam = torch.inverse(torch.tensor(R, dtype=torch.float32, device=img_tensor.device)).to(img_tensor.dtype) @ (xy_world - torch.tensor(T, dtype=img_tensor.dtype, device=img_tensor.device).view(3,1))
# Compute the coordinates in the new image
xy_dst_homogeneous = torch.tensor(intrinsic, dtype=img_tensor.dtype, device=img_tensor.device) @ xy_new_cam
xy_dst = xy_dst_homogeneous[:2, :] / xy_dst_homogeneous[2, :]
# Reshape to a 2D grid and normalize to [-1, 1]
xy_dst = xy_dst.reshape(2, h, w)
xy_dst = (xy_dst - torch.tensor([[w/2.0], [h/2.0]], dtype=img_tensor.dtype, device=img_tensor.device).unsqueeze(-1)) / torch.tensor([[w/2.0], [h/2.0]], dtype=img_tensor.dtype, device=img_tensor.device).unsqueeze(-1)
xy_dst = torch.flip(xy_dst, [0])
xy_dst = xy_dst.permute(1, 2, 0)
# Perform the warping
wrapped_img = F.grid_sample(img_tensor, xy_dst.to(img_tensor.dtype)[None], align_corners=True, mode='bilinear', padding_mode='reflection')
wrapped_freq = fft.fftn(wrapped_img, dim=(-2, -1))
wrapped_freq = fft.fftshift(wrapped_freq, dim=(-2, -1))
wrapped_img = self.combine_low_and_high(wrapped_freq, high_freq, fft_mask)
return wrapped_img
def wrap_img_tensor_w_fft_matrix(self, img_tensor, depth_tensor,
theta_z=0, theta_x=0, theta_y=-10, T=[0,0,-2], threshold=4):
_, img_tensor, high_freq, low_freq, fft_mask = self.get_low_high_frequent_tensors(img_tensor, threshold)
intrinsic_matrix = np.array([[1000, 0, img_tensor.shape[-1]/2],
[0, 1000, img_tensor.shape[-2]/2],
[0, 0, 1]]) # Example intrinsic matrix
ori_size = None
if depth_tensor.shape[-1] != img_tensor.shape[-1]:
scale = depth_tensor.shape[-1] / img_tensor.shape[-1]
ori_size = (img_tensor.shape[-2], img_tensor.shape[-1])
img_tensor_ori = img_tensor.clone()
# img_tensor = F.interpolate(img_tensor, size=(depth_tensor.shape[-2], depth_tensor.shape[-1]))
depth_tensor = F.interpolate(depth_tensor.unsqueeze(0).unsqueeze(0), size=ori_size, mode='bilinear').squeeze().to(torch.float16)
intrinsic_matrix[0,0] /= scale
intrinsic_matrix[1,1] /= scale
rotation_matrix = self.calc_R(theta_z=theta_z, theta_x=theta_x, theta_y=theta_y)
translation_vector = np.array(T) # Translation vector to shift camera to the right
h,w = img_tensor.shape[2:]
xy_src = np.mgrid[0:h, 0:w].reshape(2, -1)
xy_src_homogeneous = np.vstack((xy_src, np.ones((1, xy_src.shape[1]))))
# Convert to torch tensors
xy_src_homogeneous_tensor = torch.tensor(xy_src_homogeneous, dtype=torch.float16, device=img_tensor.device)
# Compute the coordinates in the world frame
xy_world = torch.inverse(torch.tensor(intrinsic_matrix, dtype=torch.float32, device=img_tensor.device)).to(torch.float16) @ xy_src_homogeneous_tensor
xy_world = xy_world * depth_tensor.view(1, -1)
# Compute the coordinates in the new camera frame
xy_new_cam = torch.inverse(torch.tensor(rotation_matrix, dtype=torch.float32, device=img_tensor.device)).to(torch.float16) @ (xy_world - torch.tensor(translation_vector, dtype=torch.float16, device=img_tensor.device).view(3,1))
# Compute the coordinates in the new image
xy_dst_homogeneous = torch.tensor(intrinsic_matrix, dtype=torch.float16, device=img_tensor.device) @ xy_new_cam
xy_dst = xy_dst_homogeneous[:2, :] / xy_dst_homogeneous[2, :]
# Reshape to a 2D grid and normalize to [-1, 1]
xy_dst = xy_dst.reshape(2, h, w)
xy_dst = (xy_dst - torch.tensor([[w/2.0], [h/2.0]], dtype=torch.float16, device=img_tensor.device).unsqueeze(-1)) / torch.tensor([[w/2.0], [h/2.0]], dtype=torch.float16, device=img_tensor.device).unsqueeze(-1)
xy_dst = torch.flip(xy_dst, [0])
xy_dst = xy_dst.permute(1, 2, 0)
# Perform the warping
wrapped_img = F.grid_sample(img_tensor, xy_dst.to(torch.float16)[None], align_corners=True, mode='bilinear', padding_mode='reflection')
wrapped_freq = fft.fftn(wrapped_img, dim=(-2, -1))
wrapped_freq = fft.fftshift(wrapped_freq, dim=(-2, -1))
wrapped_img = self.combine_low_and_high(wrapped_freq, high_freq, fft_mask)
return wrapped_img
def wrap_img_tensor(self, img_tensor, depth_tensor,
theta_z=0, theta_x=0, theta_y=-10, T=[0,0,-2]):
intrinsic_matrix = np.array([[1000, 0, img_tensor.shape[-1]/2],
[0, 1000, img_tensor.shape[-2]/2],
[0, 0, 1]]) # Example intrinsic matrix
ori_size = None
if depth_tensor.shape[-1] != img_tensor.shape[-1]:
scale = depth_tensor.shape[-1] / img_tensor.shape[-1]
ori_size = (img_tensor.shape[-2], img_tensor.shape[-1])
img_tensor_ori = img_tensor.clone()
# img_tensor = F.interpolate(img_tensor, size=(depth_tensor.shape[-2], depth_tensor.shape[-1]))
depth_tensor = F.interpolate(depth_tensor.unsqueeze(0).unsqueeze(0), size=ori_size, mode='bilinear').squeeze().to(torch.float16)
intrinsic_matrix[0,0] /= scale
intrinsic_matrix[1,1] /= scale
rotation_matrix = self.calc_R(theta_z=theta_z, theta_x=theta_x, theta_y=theta_y)
translation_vector = np.array(T) # Translation vector to shift camera to the right
h,w = img_tensor.shape[2:]
xy_src = np.mgrid[0:h, 0:w].reshape(2, -1)
xy_src_homogeneous = np.vstack((xy_src, np.ones((1, xy_src.shape[1]))))
# Convert to torch tensors
xy_src_homogeneous_tensor = torch.tensor(xy_src_homogeneous, dtype=torch.float16, device=img_tensor.device)
# Compute the coordinates in the world frame
xy_world = torch.inverse(torch.tensor(intrinsic_matrix, dtype=torch.float32, device=img_tensor.device)).to(torch.float16) @ xy_src_homogeneous_tensor
xy_world = xy_world * depth_tensor.view(1, -1)
# Compute the coordinates in the new camera frame
xy_new_cam = torch.inverse(torch.tensor(rotation_matrix, dtype=torch.float32, device=img_tensor.device)).to(torch.float16) @ (xy_world - torch.tensor(translation_vector, dtype=torch.float16, device=img_tensor.device).view(3,1))
# Compute the coordinates in the new image
xy_dst_homogeneous = torch.tensor(intrinsic_matrix, dtype=torch.float16, device=img_tensor.device) @ xy_new_cam
xy_dst = xy_dst_homogeneous[:2, :] / xy_dst_homogeneous[2, :]
# Reshape to a 2D grid and normalize to [-1, 1]
xy_dst = xy_dst.reshape(2, h, w)
xy_dst = (xy_dst - torch.tensor([[w/2.0], [h/2.0]], dtype=torch.float16, device=img_tensor.device).unsqueeze(-1)) / torch.tensor([[w/2.0], [h/2.0]], dtype=torch.float16, device=img_tensor.device).unsqueeze(-1)
xy_dst = torch.flip(xy_dst, [0])
xy_dst = xy_dst.permute(1, 2, 0)
# Perform the warping
wrapped_img = F.grid_sample(img_tensor, xy_dst.to(torch.float16)[None], align_corners=True, mode='bilinear')
return wrapped_img
@torch.no_grad()
def __call__(self, img_array, theta_z=0, theta_x=0, theta_y=-10, T=[0,0,-2]):
img_depth = self.transform({"image": img_array})["image"]
# compute
prediction = self.process(
self.device,
self.model,
self.model_type,
img_depth,
(self.net_w, self.net_h),
img_array.shape[1::-1],
optimize=False,
use_camera=False,
)
depth = self.prediction2depth(prediction)
# img = img_array.copy()
# img = img / 2. + 0.5
K = np.array([[1000, 0, img_array.shape[1]/2],
[0, 1000, img_array.shape[0]/2],
[0, 0, 1]]) # Example intrinsic matrix
R = self.calc_R(theta_z=theta_z, theta_x=theta_x, theta_y=theta_y)
T = np.array(T) # Translation vector to shift camera to the right
# new_img = self.render_new_view(img_array, depth, R, T, K)
new_img = self.wrap_img(img_array, depth, K, R, T)
mask = np.all(new_img == [0,0,0], axis=2).astype(np.uint8) * 255
mask = 255 - mask
return new_img, mask, depth
|