Spaces:
Runtime error
Runtime error
imsuperkong
commited on
Commit
•
dc47947
1
Parent(s):
785681e
Upload 31 files
Browse files- lib/__pycache__/midas.cpython-38.pyc +0 -0
- lib/midas.py +483 -0
- midas/__pycache__/base_model.cpython-38.pyc +0 -0
- midas/__pycache__/blocks.cpython-38.pyc +0 -0
- midas/__pycache__/dpt_depth.cpython-38.pyc +0 -0
- midas/__pycache__/midas_net.cpython-38.pyc +0 -0
- midas/__pycache__/midas_net_custom.cpython-38.pyc +0 -0
- midas/__pycache__/model_loader.cpython-38.pyc +0 -0
- midas/__pycache__/transforms.cpython-38.pyc +0 -0
- midas/backbones/__pycache__/beit.cpython-38.pyc +0 -0
- midas/backbones/__pycache__/levit.cpython-38.pyc +0 -0
- midas/backbones/__pycache__/swin.cpython-38.pyc +0 -0
- midas/backbones/__pycache__/swin2.cpython-38.pyc +0 -0
- midas/backbones/__pycache__/swin_common.cpython-38.pyc +0 -0
- midas/backbones/__pycache__/utils.cpython-38.pyc +0 -0
- midas/backbones/__pycache__/vit.cpython-38.pyc +0 -0
- midas/backbones/beit.py +196 -0
- midas/backbones/levit.py +106 -0
- midas/backbones/next_vit.py +39 -0
- midas/backbones/swin.py +13 -0
- midas/backbones/swin2.py +34 -0
- midas/backbones/swin_common.py +52 -0
- midas/backbones/utils.py +249 -0
- midas/backbones/vit.py +221 -0
- midas/base_model.py +16 -0
- midas/blocks.py +439 -0
- midas/dpt_depth.py +166 -0
- midas/midas_net.py +76 -0
- midas/midas_net_custom.py +128 -0
- midas/model_loader.py +242 -0
- midas/transforms.py +234 -0
lib/__pycache__/midas.cpython-38.pyc
ADDED
Binary file (12.6 kB). View file
|
|
lib/midas.py
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import torch
|
4 |
+
import cv2
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import os
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch.fft as fft
|
10 |
+
import ipdb
|
11 |
+
import copy
|
12 |
+
import wget
|
13 |
+
|
14 |
+
from midas.model_loader import load_model
|
15 |
+
import torch.nn.functional as F
|
16 |
+
first_execution = True
|
17 |
+
thisdir = os.path.abspath(os.path.dirname(__file__))
|
18 |
+
|
19 |
+
class MiDas():
|
20 |
+
def __init__(self, device, model_type) -> None:
|
21 |
+
self.device = device
|
22 |
+
|
23 |
+
torch.backends.cudnn.enabled = True
|
24 |
+
torch.backends.cudnn.benchmark = True
|
25 |
+
|
26 |
+
model_weights = os.path.join(thisdir, '..' ,f"./weights/{model_type}.pt")
|
27 |
+
if not os.path.exists(model_weights):
|
28 |
+
os.makedirs(os.path.dirname(model_weights), exist_ok=True)
|
29 |
+
if '384' in model_type:
|
30 |
+
wget.download('https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_large_384.pt', model_weights)
|
31 |
+
elif '512' in model_type:
|
32 |
+
wget.download('https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt', model_weights)
|
33 |
+
else:
|
34 |
+
assert False, 'please select correct depth estimation model.'
|
35 |
+
print("Device: %s" % device)
|
36 |
+
model, transform, net_w, net_h = load_model(
|
37 |
+
device, model_weights, model_type, optimize=False, height=None, square=False
|
38 |
+
)
|
39 |
+
self.model = model
|
40 |
+
self.transform = transform
|
41 |
+
self.model_type = model_type
|
42 |
+
self.net_w = net_w
|
43 |
+
self.net_h = net_h
|
44 |
+
|
45 |
+
def process(
|
46 |
+
self, device, model, model_type, image, input_size, target_size, optimize, use_camera
|
47 |
+
):
|
48 |
+
"""
|
49 |
+
Run the inference and interpolate.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
device (torch.device): the torch device used
|
53 |
+
model: the model used for inference
|
54 |
+
model_type: the type of the model
|
55 |
+
image: the image fed into the neural network
|
56 |
+
input_size: the size (width, height) of the neural network input (for OpenVINO)
|
57 |
+
target_size: the size (width, height) the neural network output is interpolated to
|
58 |
+
optimize: optimize the model to half-floats on CUDA?
|
59 |
+
use_camera: is the camera used?
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
the prediction
|
63 |
+
"""
|
64 |
+
global first_execution
|
65 |
+
|
66 |
+
if "openvino" in model_type:
|
67 |
+
if first_execution or not use_camera:
|
68 |
+
# print(
|
69 |
+
# f" Input resized to {input_size[0]}x{input_size[1]} before entering the encoder"
|
70 |
+
# )
|
71 |
+
first_execution = False
|
72 |
+
|
73 |
+
sample = [np.reshape(image, (1, 3, *input_size))]
|
74 |
+
prediction = model(sample)[model.output(0)][0]
|
75 |
+
prediction = cv2.resize(
|
76 |
+
prediction, dsize=target_size, interpolation=cv2.INTER_CUBIC
|
77 |
+
)
|
78 |
+
else:
|
79 |
+
sample = torch.from_numpy(image).to(device).unsqueeze(0)
|
80 |
+
|
81 |
+
if optimize and device == torch.device("cuda"):
|
82 |
+
if first_execution:
|
83 |
+
print(
|
84 |
+
" Optimization to half-floats activated. Use with caution, because models like Swin require\n"
|
85 |
+
" float precision to work properly and may yield non-finite depth values to some extent for\n"
|
86 |
+
" half-floats."
|
87 |
+
)
|
88 |
+
sample = sample.to(memory_format=torch.channels_last)
|
89 |
+
sample = sample.half()
|
90 |
+
|
91 |
+
if first_execution or not use_camera:
|
92 |
+
height, width = sample.shape[2:]
|
93 |
+
print(f" Input resized to {width}x{height} before entering the encoder")
|
94 |
+
first_execution = False
|
95 |
+
|
96 |
+
prediction = model.forward(sample)
|
97 |
+
prediction = (
|
98 |
+
torch.nn.functional.interpolate(
|
99 |
+
prediction.unsqueeze(1),
|
100 |
+
size=target_size[::-1],
|
101 |
+
mode="bicubic",
|
102 |
+
align_corners=False,
|
103 |
+
)
|
104 |
+
.squeeze()
|
105 |
+
.cpu()
|
106 |
+
.numpy()
|
107 |
+
)
|
108 |
+
|
109 |
+
return prediction
|
110 |
+
|
111 |
+
def prediction2depth(self, depth):
|
112 |
+
bits = 1
|
113 |
+
if not np.isfinite(depth).all():
|
114 |
+
depth=np.nan_to_num(depth, nan=0.0, posinf=0.0, neginf=0.0)
|
115 |
+
print("WARNING: Non-finite depth values present")
|
116 |
+
|
117 |
+
depth_min = depth.min()
|
118 |
+
depth_max = depth.max()
|
119 |
+
|
120 |
+
max_val = (2**(8*bits))-1
|
121 |
+
|
122 |
+
if depth_max - depth_min > np.finfo("float").eps:
|
123 |
+
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
124 |
+
else:
|
125 |
+
out = np.zeros(depth.shape, dtype=depth.dtype)
|
126 |
+
# out = cv2.applyColorMap(np.uint8(out), cv2.COLORMAP_INFERNO)
|
127 |
+
return out
|
128 |
+
|
129 |
+
def calc_R(self, theta_z, theta_x, theta_y):
|
130 |
+
theta_z, theta_x, theta_y = theta_z/180*np.pi, theta_x/180*np.pi, theta_y/180*np.pi,
|
131 |
+
Rz = np.array([[np.cos(theta_z), np.sin(theta_z), 0],
|
132 |
+
[-np.sin(theta_z), np.cos(theta_z), 0],
|
133 |
+
[0,0,1]])
|
134 |
+
Rx = np.array([[1,0,0],
|
135 |
+
[0,np.cos(theta_x), np.sin(theta_x)],
|
136 |
+
[0, -np.sin(theta_x), np.cos(theta_x)]])
|
137 |
+
Ry = np.array([[np.cos(theta_y), 0, np.sin(theta_y)],
|
138 |
+
[0,1,0],
|
139 |
+
[-np.sin(theta_y), 0, np.cos(theta_y)]])
|
140 |
+
|
141 |
+
R = Rz @ Rx @ Ry
|
142 |
+
return R
|
143 |
+
|
144 |
+
def render_new_view(self, img, depth, R, t, K):
|
145 |
+
h, w, _ = img.shape
|
146 |
+
new_img = np.zeros_like(img)
|
147 |
+
|
148 |
+
for y in range(h):
|
149 |
+
for x in range(w):
|
150 |
+
# Back-project
|
151 |
+
Z = depth[y, x]
|
152 |
+
X = (x - K[0, 2]) * Z / K[0, 0]
|
153 |
+
Y = (y - K[1, 2]) * Z / K[1, 1]
|
154 |
+
point3D = np.array([X, Y, Z, 1])
|
155 |
+
|
156 |
+
# Transform
|
157 |
+
point3D_new = R @ point3D[:3] + t
|
158 |
+
if point3D_new[2] <= 0: # point is behind the camera
|
159 |
+
continue
|
160 |
+
|
161 |
+
# Project to new view
|
162 |
+
u = int(K[0, 0] * point3D_new[0] / point3D_new[2] + K[0, 2])
|
163 |
+
v = int(K[1, 1] * point3D_new[1] / point3D_new[2] + K[1, 2])
|
164 |
+
|
165 |
+
if 0 <= u < w and 0 <= v < h:
|
166 |
+
new_img[v, u] = img[y, x]
|
167 |
+
return new_img
|
168 |
+
|
169 |
+
def wrap_img(self, img, depth_map, K, R, T, target_point=None):
|
170 |
+
h, w = img.shape[:2]
|
171 |
+
# Generate grid of coordinates (x, y)
|
172 |
+
x, y = np.meshgrid(np.arange(w), np.arange(h))
|
173 |
+
ones = np.ones_like(x)
|
174 |
+
|
175 |
+
# Flatten and stack to get homogeneous coordinates
|
176 |
+
homogeneous_coordinates = np.stack((x.flatten(), y.flatten(), ones.flatten()), axis=1).T
|
177 |
+
|
178 |
+
# Inverse intrinsic matrix
|
179 |
+
K_inv = np.linalg.inv(K)
|
180 |
+
|
181 |
+
# Inverse rotation and translation
|
182 |
+
R_inv = R.T
|
183 |
+
T_inv = -R_inv @ T
|
184 |
+
|
185 |
+
# Project to 3D using depth map
|
186 |
+
world_coordinates = K_inv @ homogeneous_coordinates
|
187 |
+
world_coordinates *= depth_map.flatten()
|
188 |
+
|
189 |
+
# Apply inverse transformation
|
190 |
+
transformed_world_coordinates = R_inv @ world_coordinates + T_inv.reshape(-1, 1)
|
191 |
+
|
192 |
+
# Project back to 2D
|
193 |
+
valid = transformed_world_coordinates[2, :] > 0
|
194 |
+
projected_2D = K @ transformed_world_coordinates
|
195 |
+
projected_2D /= projected_2D[2, :]
|
196 |
+
|
197 |
+
# Initialize map_x and map_y
|
198 |
+
map_x = np.zeros((h, w), dtype=np.float32)
|
199 |
+
map_y = np.zeros((h, w), dtype=np.float32)
|
200 |
+
|
201 |
+
# Assign valid projection values to map_x and map_y
|
202 |
+
map_x.flat[valid] = projected_2D[0, valid]
|
203 |
+
map_y.flat[valid] = projected_2D[1, valid]
|
204 |
+
|
205 |
+
# Perform the warping
|
206 |
+
wrapped_img = cv2.remap(img, map_x, map_y, interpolation=cv2.INTER_LINEAR)
|
207 |
+
if target_point is None:
|
208 |
+
return wrapped_img
|
209 |
+
else:
|
210 |
+
target_point = (map_x[int(target_point[1]), int(target_point[0])], map_y[int(target_point[1]), int(target_point[0])])
|
211 |
+
target_point = tuple(max(0, min(511, x)) for x in target_point)
|
212 |
+
return wrapped_img, target_point
|
213 |
+
|
214 |
+
def get_low_high_frequent_tensors(self, x, threshold=4):
|
215 |
+
dtype = x.dtype
|
216 |
+
x = x.type(torch.float32)
|
217 |
+
|
218 |
+
# FFT
|
219 |
+
x_freq = fft.fftn(x, dim=(-2, -1))
|
220 |
+
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
|
221 |
+
B,C,H,W = x_freq.shape
|
222 |
+
mask = torch.ones((B, C, H, W)).to(x.device)
|
223 |
+
|
224 |
+
crow, ccol = H // 2, W //2
|
225 |
+
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = 0 # low 0 high 1
|
226 |
+
x_freq_high = x_freq * mask
|
227 |
+
x_freq_low = x_freq * (1 - mask)
|
228 |
+
|
229 |
+
x_freq_high = fft.ifftshift(x_freq_high, dim=(-2, -1))
|
230 |
+
x_high = fft.ifftn(x_freq_high, dim=(-2, -1)).real
|
231 |
+
x_high = x_high.type(dtype)
|
232 |
+
|
233 |
+
x_freq_low = fft.ifftshift(x_freq_low, dim=(-2, -1))
|
234 |
+
x_low = fft.ifftn(x_freq_low, dim=(-2, -1)).real
|
235 |
+
x_low = x_low.type(dtype)
|
236 |
+
return x_high, x_low, x_freq_high, x_freq_low, mask
|
237 |
+
|
238 |
+
def combine_low_and_high(self, freq_low, freq_high, mask):
|
239 |
+
freq = freq_high * mask + freq_low * (1-mask)
|
240 |
+
freq = fft.ifftshift(freq, dim=(-2, -1))
|
241 |
+
x = fft.ifftn(freq, dim=(-2, -1)).real
|
242 |
+
return x
|
243 |
+
|
244 |
+
|
245 |
+
def wrap_img_tensor_w_fft(self, img_tensor, depth_tensor,
|
246 |
+
theta_z=0, theta_x=0, theta_y=-10, T=[0,0,-2], threshold=4):
|
247 |
+
_, img_tensor, high_freq, low_freq, fft_mask = self.get_low_high_frequent_tensors(img_tensor, threshold)
|
248 |
+
|
249 |
+
intrinsic_matrix = np.array([[1000, 0, img_tensor.shape[-1]/2],
|
250 |
+
[0, 1000, img_tensor.shape[-2]/2],
|
251 |
+
[0, 0, 1]]) # Example intrinsic matrix
|
252 |
+
ori_size = None
|
253 |
+
if depth_tensor.shape[-1] != img_tensor.shape[-1]:
|
254 |
+
scale = depth_tensor.shape[-1] / img_tensor.shape[-1]
|
255 |
+
ori_size = (img_tensor.shape[-2], img_tensor.shape[-1])
|
256 |
+
img_tensor_ori = img_tensor.clone()
|
257 |
+
# img_tensor = F.interpolate(img_tensor, size=(depth_tensor.shape[-2], depth_tensor.shape[-1]))
|
258 |
+
depth_tensor = F.interpolate(depth_tensor.unsqueeze(0).unsqueeze(0), size=ori_size, mode='bilinear').squeeze().to(torch.float16)
|
259 |
+
intrinsic_matrix[0,0] /= scale
|
260 |
+
intrinsic_matrix[1,1] /= scale
|
261 |
+
rotation_matrix = self.calc_R(theta_z=theta_z, theta_x=theta_x, theta_y=theta_y)
|
262 |
+
translation_vector = np.array(T) # Translation vector to shift camera to the right
|
263 |
+
|
264 |
+
h,w = img_tensor.shape[2:]
|
265 |
+
|
266 |
+
xy_src = np.mgrid[0:h, 0:w].reshape(2, -1)
|
267 |
+
|
268 |
+
xy_src_homogeneous = np.vstack((xy_src, np.ones((1, xy_src.shape[1]))))
|
269 |
+
|
270 |
+
# Convert to torch tensors
|
271 |
+
xy_src_homogeneous_tensor = torch.tensor(xy_src_homogeneous, dtype=torch.float16, device=img_tensor.device)
|
272 |
+
|
273 |
+
# Compute the coordinates in the world frame
|
274 |
+
xy_world = torch.inverse(torch.tensor(intrinsic_matrix, dtype=torch.float32, device=img_tensor.device)).to(torch.float16) @ xy_src_homogeneous_tensor
|
275 |
+
xy_world = xy_world * depth_tensor.view(1, -1)
|
276 |
+
|
277 |
+
# Compute the coordinates in the new camera frame
|
278 |
+
xy_new_cam = torch.inverse(torch.tensor(rotation_matrix, dtype=torch.float32, device=img_tensor.device)).to(torch.float16) @ (xy_world - torch.tensor(translation_vector, dtype=torch.float16, device=img_tensor.device).view(3,1))
|
279 |
+
|
280 |
+
# Compute the coordinates in the new image
|
281 |
+
xy_dst_homogeneous = torch.tensor(intrinsic_matrix, dtype=torch.float16, device=img_tensor.device) @ xy_new_cam
|
282 |
+
xy_dst = xy_dst_homogeneous[:2, :] / xy_dst_homogeneous[2, :]
|
283 |
+
|
284 |
+
# Reshape to a 2D grid and normalize to [-1, 1]
|
285 |
+
xy_dst = xy_dst.reshape(2, h, w)
|
286 |
+
xy_dst = (xy_dst - torch.tensor([[w/2.0], [h/2.0]], dtype=torch.float16, device=img_tensor.device).unsqueeze(-1)) / torch.tensor([[w/2.0], [h/2.0]], dtype=torch.float16, device=img_tensor.device).unsqueeze(-1)
|
287 |
+
xy_dst = torch.flip(xy_dst, [0])
|
288 |
+
xy_dst = xy_dst.permute(1, 2, 0)
|
289 |
+
|
290 |
+
# Perform the warping
|
291 |
+
wrapped_img = F.grid_sample(img_tensor, xy_dst.to(torch.float16)[None], align_corners=True, mode='bilinear', padding_mode='reflection')
|
292 |
+
wrapped_freq = fft.fftn(wrapped_img, dim=(-2, -1))
|
293 |
+
wrapped_freq = fft.fftshift(wrapped_freq, dim=(-2, -1))
|
294 |
+
wrapped_img = self.combine_low_and_high(wrapped_freq, high_freq, fft_mask)
|
295 |
+
return wrapped_img
|
296 |
+
|
297 |
+
def wrap_img_tensor_w_fft_ext(self, img_tensor, depth_tensor, K,R,T, threshold=4):
|
298 |
+
_, img_tensor, high_freq, low_freq, fft_mask = self.get_low_high_frequent_tensors(img_tensor, threshold)
|
299 |
+
|
300 |
+
ori_size = None
|
301 |
+
|
302 |
+
if depth_tensor.shape[-1] != img_tensor.shape[-1]:
|
303 |
+
scale = depth_tensor.shape[-1] / img_tensor.shape[-1]
|
304 |
+
ori_size = (img_tensor.shape[-2], img_tensor.shape[-1])
|
305 |
+
# img_tensor = F.interpolate(img_tensor, size=(depth_tensor.shape[-2], depth_tensor.shape[-1]))
|
306 |
+
depth_tensor = F.interpolate(depth_tensor.unsqueeze(0).unsqueeze(0), size=ori_size, mode='bilinear').squeeze().to(torch.float16)
|
307 |
+
intrinsic = copy.deepcopy(K)
|
308 |
+
intrinsic = K / scale
|
309 |
+
intrinsic[2,2] = 1
|
310 |
+
|
311 |
+
h,w = img_tensor.shape[2:]
|
312 |
+
|
313 |
+
xy_src = np.mgrid[0:h, 0:w].reshape(2, -1)
|
314 |
+
|
315 |
+
xy_src_homogeneous = np.vstack((xy_src, np.ones((1, xy_src.shape[1]))))
|
316 |
+
|
317 |
+
# Convert to torch tensors
|
318 |
+
xy_src_homogeneous_tensor = torch.tensor(xy_src_homogeneous, dtype=img_tensor.dtype, device=img_tensor.device)
|
319 |
+
|
320 |
+
# Compute the coordinates in the world frame
|
321 |
+
# xy_world = torch.inverse(torch.tensor(K, dtype=torch.float32, device=img_tensor.device)).to(torch.float16) @ xy_src_homogeneous_tensor
|
322 |
+
xy_world = torch.tensor(np.linalg.inv(intrinsic)).to(img_tensor.dtype).to(img_tensor.device) @ xy_src_homogeneous_tensor
|
323 |
+
xy_world = xy_world * depth_tensor.view(1, -1)
|
324 |
+
|
325 |
+
# Compute the coordinates in the new camera frame
|
326 |
+
xy_new_cam = torch.inverse(torch.tensor(R, dtype=torch.float32, device=img_tensor.device)).to(img_tensor.dtype) @ (xy_world - torch.tensor(T, dtype=img_tensor.dtype, device=img_tensor.device).view(3,1))
|
327 |
+
|
328 |
+
# Compute the coordinates in the new image
|
329 |
+
xy_dst_homogeneous = torch.tensor(intrinsic, dtype=img_tensor.dtype, device=img_tensor.device) @ xy_new_cam
|
330 |
+
xy_dst = xy_dst_homogeneous[:2, :] / xy_dst_homogeneous[2, :]
|
331 |
+
|
332 |
+
# Reshape to a 2D grid and normalize to [-1, 1]
|
333 |
+
xy_dst = xy_dst.reshape(2, h, w)
|
334 |
+
xy_dst = (xy_dst - torch.tensor([[w/2.0], [h/2.0]], dtype=img_tensor.dtype, device=img_tensor.device).unsqueeze(-1)) / torch.tensor([[w/2.0], [h/2.0]], dtype=img_tensor.dtype, device=img_tensor.device).unsqueeze(-1)
|
335 |
+
xy_dst = torch.flip(xy_dst, [0])
|
336 |
+
xy_dst = xy_dst.permute(1, 2, 0)
|
337 |
+
|
338 |
+
# Perform the warping
|
339 |
+
wrapped_img = F.grid_sample(img_tensor, xy_dst.to(img_tensor.dtype)[None], align_corners=True, mode='bilinear', padding_mode='reflection')
|
340 |
+
wrapped_freq = fft.fftn(wrapped_img, dim=(-2, -1))
|
341 |
+
wrapped_freq = fft.fftshift(wrapped_freq, dim=(-2, -1))
|
342 |
+
wrapped_img = self.combine_low_and_high(wrapped_freq, high_freq, fft_mask)
|
343 |
+
return wrapped_img
|
344 |
+
|
345 |
+
def wrap_img_tensor_w_fft_matrix(self, img_tensor, depth_tensor,
|
346 |
+
theta_z=0, theta_x=0, theta_y=-10, T=[0,0,-2], threshold=4):
|
347 |
+
_, img_tensor, high_freq, low_freq, fft_mask = self.get_low_high_frequent_tensors(img_tensor, threshold)
|
348 |
+
|
349 |
+
intrinsic_matrix = np.array([[1000, 0, img_tensor.shape[-1]/2],
|
350 |
+
[0, 1000, img_tensor.shape[-2]/2],
|
351 |
+
[0, 0, 1]]) # Example intrinsic matrix
|
352 |
+
ori_size = None
|
353 |
+
if depth_tensor.shape[-1] != img_tensor.shape[-1]:
|
354 |
+
scale = depth_tensor.shape[-1] / img_tensor.shape[-1]
|
355 |
+
ori_size = (img_tensor.shape[-2], img_tensor.shape[-1])
|
356 |
+
img_tensor_ori = img_tensor.clone()
|
357 |
+
# img_tensor = F.interpolate(img_tensor, size=(depth_tensor.shape[-2], depth_tensor.shape[-1]))
|
358 |
+
depth_tensor = F.interpolate(depth_tensor.unsqueeze(0).unsqueeze(0), size=ori_size, mode='bilinear').squeeze().to(torch.float16)
|
359 |
+
intrinsic_matrix[0,0] /= scale
|
360 |
+
intrinsic_matrix[1,1] /= scale
|
361 |
+
rotation_matrix = self.calc_R(theta_z=theta_z, theta_x=theta_x, theta_y=theta_y)
|
362 |
+
translation_vector = np.array(T) # Translation vector to shift camera to the right
|
363 |
+
|
364 |
+
h,w = img_tensor.shape[2:]
|
365 |
+
|
366 |
+
xy_src = np.mgrid[0:h, 0:w].reshape(2, -1)
|
367 |
+
|
368 |
+
xy_src_homogeneous = np.vstack((xy_src, np.ones((1, xy_src.shape[1]))))
|
369 |
+
|
370 |
+
# Convert to torch tensors
|
371 |
+
xy_src_homogeneous_tensor = torch.tensor(xy_src_homogeneous, dtype=torch.float16, device=img_tensor.device)
|
372 |
+
|
373 |
+
# Compute the coordinates in the world frame
|
374 |
+
xy_world = torch.inverse(torch.tensor(intrinsic_matrix, dtype=torch.float32, device=img_tensor.device)).to(torch.float16) @ xy_src_homogeneous_tensor
|
375 |
+
xy_world = xy_world * depth_tensor.view(1, -1)
|
376 |
+
|
377 |
+
# Compute the coordinates in the new camera frame
|
378 |
+
xy_new_cam = torch.inverse(torch.tensor(rotation_matrix, dtype=torch.float32, device=img_tensor.device)).to(torch.float16) @ (xy_world - torch.tensor(translation_vector, dtype=torch.float16, device=img_tensor.device).view(3,1))
|
379 |
+
|
380 |
+
# Compute the coordinates in the new image
|
381 |
+
xy_dst_homogeneous = torch.tensor(intrinsic_matrix, dtype=torch.float16, device=img_tensor.device) @ xy_new_cam
|
382 |
+
xy_dst = xy_dst_homogeneous[:2, :] / xy_dst_homogeneous[2, :]
|
383 |
+
|
384 |
+
# Reshape to a 2D grid and normalize to [-1, 1]
|
385 |
+
xy_dst = xy_dst.reshape(2, h, w)
|
386 |
+
xy_dst = (xy_dst - torch.tensor([[w/2.0], [h/2.0]], dtype=torch.float16, device=img_tensor.device).unsqueeze(-1)) / torch.tensor([[w/2.0], [h/2.0]], dtype=torch.float16, device=img_tensor.device).unsqueeze(-1)
|
387 |
+
xy_dst = torch.flip(xy_dst, [0])
|
388 |
+
xy_dst = xy_dst.permute(1, 2, 0)
|
389 |
+
|
390 |
+
# Perform the warping
|
391 |
+
wrapped_img = F.grid_sample(img_tensor, xy_dst.to(torch.float16)[None], align_corners=True, mode='bilinear', padding_mode='reflection')
|
392 |
+
wrapped_freq = fft.fftn(wrapped_img, dim=(-2, -1))
|
393 |
+
wrapped_freq = fft.fftshift(wrapped_freq, dim=(-2, -1))
|
394 |
+
wrapped_img = self.combine_low_and_high(wrapped_freq, high_freq, fft_mask)
|
395 |
+
|
396 |
+
|
397 |
+
return wrapped_img
|
398 |
+
|
399 |
+
|
400 |
+
def wrap_img_tensor(self, img_tensor, depth_tensor,
|
401 |
+
theta_z=0, theta_x=0, theta_y=-10, T=[0,0,-2]):
|
402 |
+
intrinsic_matrix = np.array([[1000, 0, img_tensor.shape[-1]/2],
|
403 |
+
[0, 1000, img_tensor.shape[-2]/2],
|
404 |
+
[0, 0, 1]]) # Example intrinsic matrix
|
405 |
+
ori_size = None
|
406 |
+
if depth_tensor.shape[-1] != img_tensor.shape[-1]:
|
407 |
+
scale = depth_tensor.shape[-1] / img_tensor.shape[-1]
|
408 |
+
ori_size = (img_tensor.shape[-2], img_tensor.shape[-1])
|
409 |
+
img_tensor_ori = img_tensor.clone()
|
410 |
+
# img_tensor = F.interpolate(img_tensor, size=(depth_tensor.shape[-2], depth_tensor.shape[-1]))
|
411 |
+
depth_tensor = F.interpolate(depth_tensor.unsqueeze(0).unsqueeze(0), size=ori_size, mode='bilinear').squeeze().to(torch.float16)
|
412 |
+
intrinsic_matrix[0,0] /= scale
|
413 |
+
intrinsic_matrix[1,1] /= scale
|
414 |
+
rotation_matrix = self.calc_R(theta_z=theta_z, theta_x=theta_x, theta_y=theta_y)
|
415 |
+
translation_vector = np.array(T) # Translation vector to shift camera to the right
|
416 |
+
|
417 |
+
h,w = img_tensor.shape[2:]
|
418 |
+
|
419 |
+
xy_src = np.mgrid[0:h, 0:w].reshape(2, -1)
|
420 |
+
|
421 |
+
xy_src_homogeneous = np.vstack((xy_src, np.ones((1, xy_src.shape[1]))))
|
422 |
+
|
423 |
+
# Convert to torch tensors
|
424 |
+
xy_src_homogeneous_tensor = torch.tensor(xy_src_homogeneous, dtype=torch.float16, device=img_tensor.device)
|
425 |
+
|
426 |
+
# Compute the coordinates in the world frame
|
427 |
+
xy_world = torch.inverse(torch.tensor(intrinsic_matrix, dtype=torch.float32, device=img_tensor.device)).to(torch.float16) @ xy_src_homogeneous_tensor
|
428 |
+
xy_world = xy_world * depth_tensor.view(1, -1)
|
429 |
+
|
430 |
+
# Compute the coordinates in the new camera frame
|
431 |
+
xy_new_cam = torch.inverse(torch.tensor(rotation_matrix, dtype=torch.float32, device=img_tensor.device)).to(torch.float16) @ (xy_world - torch.tensor(translation_vector, dtype=torch.float16, device=img_tensor.device).view(3,1))
|
432 |
+
|
433 |
+
# Compute the coordinates in the new image
|
434 |
+
xy_dst_homogeneous = torch.tensor(intrinsic_matrix, dtype=torch.float16, device=img_tensor.device) @ xy_new_cam
|
435 |
+
xy_dst = xy_dst_homogeneous[:2, :] / xy_dst_homogeneous[2, :]
|
436 |
+
|
437 |
+
# Reshape to a 2D grid and normalize to [-1, 1]
|
438 |
+
xy_dst = xy_dst.reshape(2, h, w)
|
439 |
+
xy_dst = (xy_dst - torch.tensor([[w/2.0], [h/2.0]], dtype=torch.float16, device=img_tensor.device).unsqueeze(-1)) / torch.tensor([[w/2.0], [h/2.0]], dtype=torch.float16, device=img_tensor.device).unsqueeze(-1)
|
440 |
+
xy_dst = torch.flip(xy_dst, [0])
|
441 |
+
xy_dst = xy_dst.permute(1, 2, 0)
|
442 |
+
|
443 |
+
# Perform the warping
|
444 |
+
wrapped_img = F.grid_sample(img_tensor, xy_dst.to(torch.float16)[None], align_corners=True, mode='bilinear')
|
445 |
+
|
446 |
+
|
447 |
+
|
448 |
+
return wrapped_img
|
449 |
+
|
450 |
+
@torch.no_grad()
|
451 |
+
def __call__(self, img_array, theta_z=0, theta_x=0, theta_y=-10, T=[0,0,-2]):
|
452 |
+
img_depth = self.transform({"image": img_array})["image"]
|
453 |
+
|
454 |
+
# compute
|
455 |
+
prediction = self.process(
|
456 |
+
self.device,
|
457 |
+
self.model,
|
458 |
+
self.model_type,
|
459 |
+
img_depth,
|
460 |
+
(self.net_w, self.net_h),
|
461 |
+
img_array.shape[1::-1],
|
462 |
+
optimize=False,
|
463 |
+
use_camera=False,
|
464 |
+
)
|
465 |
+
|
466 |
+
depth = self.prediction2depth(prediction)
|
467 |
+
|
468 |
+
# img = img_array.copy()
|
469 |
+
# img = img / 2. + 0.5
|
470 |
+
K = np.array([[1000, 0, img_array.shape[1]/2],
|
471 |
+
[0, 1000, img_array.shape[0]/2],
|
472 |
+
[0, 0, 1]]) # Example intrinsic matrix
|
473 |
+
|
474 |
+
R = self.calc_R(theta_z=theta_z, theta_x=theta_x, theta_y=theta_y)
|
475 |
+
T = np.array(T) # Translation vector to shift camera to the right
|
476 |
+
|
477 |
+
# new_img = self.render_new_view(img_array, depth, R, T, K)
|
478 |
+
new_img = self.wrap_img(img_array, depth, K, R, T)
|
479 |
+
|
480 |
+
mask = np.all(new_img == [0,0,0], axis=2).astype(np.uint8) * 255
|
481 |
+
mask = 255 - mask
|
482 |
+
return new_img, mask, depth
|
483 |
+
|
midas/__pycache__/base_model.cpython-38.pyc
ADDED
Binary file (669 Bytes). View file
|
|
midas/__pycache__/blocks.cpython-38.pyc
ADDED
Binary file (9.05 kB). View file
|
|
midas/__pycache__/dpt_depth.cpython-38.pyc
ADDED
Binary file (4.07 kB). View file
|
|
midas/__pycache__/midas_net.cpython-38.pyc
ADDED
Binary file (2.57 kB). View file
|
|
midas/__pycache__/midas_net_custom.cpython-38.pyc
ADDED
Binary file (3.69 kB). View file
|
|
midas/__pycache__/model_loader.cpython-38.pyc
ADDED
Binary file (4.92 kB). View file
|
|
midas/__pycache__/transforms.cpython-38.pyc
ADDED
Binary file (5.7 kB). View file
|
|
midas/backbones/__pycache__/beit.cpython-38.pyc
ADDED
Binary file (5.55 kB). View file
|
|
midas/backbones/__pycache__/levit.cpython-38.pyc
ADDED
Binary file (3.43 kB). View file
|
|
midas/backbones/__pycache__/swin.cpython-38.pyc
ADDED
Binary file (509 Bytes). View file
|
|
midas/backbones/__pycache__/swin2.cpython-38.pyc
ADDED
Binary file (1.03 kB). View file
|
|
midas/backbones/__pycache__/swin_common.cpython-38.pyc
ADDED
Binary file (1.35 kB). View file
|
|
midas/backbones/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (5.89 kB). View file
|
|
midas/backbones/__pycache__/vit.cpython-38.pyc
ADDED
Binary file (4.58 kB). View file
|
|
midas/backbones/beit.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import timm
|
2 |
+
import torch
|
3 |
+
import types
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from .utils import forward_adapted_unflatten, make_backbone_default
|
9 |
+
from timm.models.beit import gen_relative_position_index
|
10 |
+
from torch.utils.checkpoint import checkpoint
|
11 |
+
from typing import Optional
|
12 |
+
|
13 |
+
|
14 |
+
def forward_beit(pretrained, x):
|
15 |
+
return forward_adapted_unflatten(pretrained, x, "forward_features")
|
16 |
+
|
17 |
+
|
18 |
+
def patch_embed_forward(self, x):
|
19 |
+
"""
|
20 |
+
Modification of timm.models.layers.patch_embed.py: PatchEmbed.forward to support arbitrary window sizes.
|
21 |
+
"""
|
22 |
+
x = self.proj(x)
|
23 |
+
if self.flatten:
|
24 |
+
x = x.flatten(2).transpose(1, 2)
|
25 |
+
x = self.norm(x)
|
26 |
+
return x
|
27 |
+
|
28 |
+
|
29 |
+
def _get_rel_pos_bias(self, window_size):
|
30 |
+
"""
|
31 |
+
Modification of timm.models.beit.py: Attention._get_rel_pos_bias to support arbitrary window sizes.
|
32 |
+
"""
|
33 |
+
old_height = 2 * self.window_size[0] - 1
|
34 |
+
old_width = 2 * self.window_size[1] - 1
|
35 |
+
|
36 |
+
new_height = 2 * window_size[0] - 1
|
37 |
+
new_width = 2 * window_size[1] - 1
|
38 |
+
|
39 |
+
old_relative_position_bias_table = self.relative_position_bias_table
|
40 |
+
|
41 |
+
old_num_relative_distance = self.num_relative_distance
|
42 |
+
new_num_relative_distance = new_height * new_width + 3
|
43 |
+
|
44 |
+
old_sub_table = old_relative_position_bias_table[:old_num_relative_distance - 3]
|
45 |
+
|
46 |
+
old_sub_table = old_sub_table.reshape(1, old_width, old_height, -1).permute(0, 3, 1, 2)
|
47 |
+
new_sub_table = F.interpolate(old_sub_table, size=(new_height, new_width), mode="bilinear")
|
48 |
+
new_sub_table = new_sub_table.permute(0, 2, 3, 1).reshape(new_num_relative_distance - 3, -1)
|
49 |
+
|
50 |
+
new_relative_position_bias_table = torch.cat(
|
51 |
+
[new_sub_table, old_relative_position_bias_table[old_num_relative_distance - 3:]])
|
52 |
+
|
53 |
+
key = str(window_size[1]) + "," + str(window_size[0])
|
54 |
+
if key not in self.relative_position_indices.keys():
|
55 |
+
self.relative_position_indices[key] = gen_relative_position_index(window_size)
|
56 |
+
|
57 |
+
relative_position_bias = new_relative_position_bias_table[
|
58 |
+
self.relative_position_indices[key].view(-1)].view(
|
59 |
+
window_size[0] * window_size[1] + 1,
|
60 |
+
window_size[0] * window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
61 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
62 |
+
return relative_position_bias.unsqueeze(0)
|
63 |
+
|
64 |
+
|
65 |
+
def attention_forward(self, x, resolution, shared_rel_pos_bias: Optional[torch.Tensor] = None):
|
66 |
+
"""
|
67 |
+
Modification of timm.models.beit.py: Attention.forward to support arbitrary window sizes.
|
68 |
+
"""
|
69 |
+
B, N, C = x.shape
|
70 |
+
|
71 |
+
qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) if self.q_bias is not None else None
|
72 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
73 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
74 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
75 |
+
|
76 |
+
q = q * self.scale
|
77 |
+
attn = (q @ k.transpose(-2, -1))
|
78 |
+
|
79 |
+
if self.relative_position_bias_table is not None:
|
80 |
+
window_size = tuple(np.array(resolution) // 16)
|
81 |
+
attn = attn + self._get_rel_pos_bias(window_size)
|
82 |
+
if shared_rel_pos_bias is not None:
|
83 |
+
attn = attn + shared_rel_pos_bias
|
84 |
+
|
85 |
+
attn = attn.softmax(dim=-1)
|
86 |
+
attn = self.attn_drop(attn)
|
87 |
+
|
88 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
89 |
+
x = self.proj(x)
|
90 |
+
x = self.proj_drop(x)
|
91 |
+
return x
|
92 |
+
|
93 |
+
|
94 |
+
def block_forward(self, x, resolution, shared_rel_pos_bias: Optional[torch.Tensor] = None):
|
95 |
+
"""
|
96 |
+
Modification of timm.models.beit.py: Block.forward to support arbitrary window sizes.
|
97 |
+
"""
|
98 |
+
if self.gamma_1 is None:
|
99 |
+
x = x + self.drop_path(self.attn(self.norm1(x), resolution, shared_rel_pos_bias=shared_rel_pos_bias))
|
100 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
101 |
+
else:
|
102 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), resolution,
|
103 |
+
shared_rel_pos_bias=shared_rel_pos_bias))
|
104 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
105 |
+
return x
|
106 |
+
|
107 |
+
|
108 |
+
def beit_forward_features(self, x):
|
109 |
+
"""
|
110 |
+
Modification of timm.models.beit.py: Beit.forward_features to support arbitrary window sizes.
|
111 |
+
"""
|
112 |
+
resolution = x.shape[2:]
|
113 |
+
|
114 |
+
x = self.patch_embed(x)
|
115 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
116 |
+
if self.pos_embed is not None:
|
117 |
+
x = x + self.pos_embed
|
118 |
+
x = self.pos_drop(x)
|
119 |
+
|
120 |
+
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
121 |
+
for blk in self.blocks:
|
122 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
123 |
+
x = checkpoint(blk, x, shared_rel_pos_bias=rel_pos_bias)
|
124 |
+
else:
|
125 |
+
x = blk(x, resolution, shared_rel_pos_bias=rel_pos_bias)
|
126 |
+
x = self.norm(x)
|
127 |
+
return x
|
128 |
+
|
129 |
+
|
130 |
+
def _make_beit_backbone(
|
131 |
+
model,
|
132 |
+
features=[96, 192, 384, 768],
|
133 |
+
size=[384, 384],
|
134 |
+
hooks=[0, 4, 8, 11],
|
135 |
+
vit_features=768,
|
136 |
+
use_readout="ignore",
|
137 |
+
start_index=1,
|
138 |
+
start_index_readout=1,
|
139 |
+
):
|
140 |
+
backbone = make_backbone_default(model, features, size, hooks, vit_features, use_readout, start_index,
|
141 |
+
start_index_readout)
|
142 |
+
|
143 |
+
backbone.model.patch_embed.forward = types.MethodType(patch_embed_forward, backbone.model.patch_embed)
|
144 |
+
backbone.model.forward_features = types.MethodType(beit_forward_features, backbone.model)
|
145 |
+
|
146 |
+
for block in backbone.model.blocks:
|
147 |
+
attn = block.attn
|
148 |
+
attn._get_rel_pos_bias = types.MethodType(_get_rel_pos_bias, attn)
|
149 |
+
attn.forward = types.MethodType(attention_forward, attn)
|
150 |
+
attn.relative_position_indices = {}
|
151 |
+
|
152 |
+
block.forward = types.MethodType(block_forward, block)
|
153 |
+
|
154 |
+
return backbone
|
155 |
+
|
156 |
+
|
157 |
+
def _make_pretrained_beitl16_512(pretrained, use_readout="ignore", hooks=None):
|
158 |
+
model = timm.create_model("beit_large_patch16_512", pretrained=pretrained)
|
159 |
+
|
160 |
+
hooks = [5, 11, 17, 23] if hooks is None else hooks
|
161 |
+
|
162 |
+
features = [256, 512, 1024, 1024]
|
163 |
+
|
164 |
+
return _make_beit_backbone(
|
165 |
+
model,
|
166 |
+
features=features,
|
167 |
+
size=[512, 512],
|
168 |
+
hooks=hooks,
|
169 |
+
vit_features=1024,
|
170 |
+
use_readout=use_readout,
|
171 |
+
)
|
172 |
+
|
173 |
+
|
174 |
+
def _make_pretrained_beitl16_384(pretrained, use_readout="ignore", hooks=None):
|
175 |
+
model = timm.create_model("beit_large_patch16_384", pretrained=pretrained)
|
176 |
+
|
177 |
+
hooks = [5, 11, 17, 23] if hooks is None else hooks
|
178 |
+
return _make_beit_backbone(
|
179 |
+
model,
|
180 |
+
features=[256, 512, 1024, 1024],
|
181 |
+
hooks=hooks,
|
182 |
+
vit_features=1024,
|
183 |
+
use_readout=use_readout,
|
184 |
+
)
|
185 |
+
|
186 |
+
|
187 |
+
def _make_pretrained_beitb16_384(pretrained, use_readout="ignore", hooks=None):
|
188 |
+
model = timm.create_model("beit_base_patch16_384", pretrained=pretrained)
|
189 |
+
|
190 |
+
hooks = [2, 5, 8, 11] if hooks is None else hooks
|
191 |
+
return _make_beit_backbone(
|
192 |
+
model,
|
193 |
+
features=[96, 192, 384, 768],
|
194 |
+
hooks=hooks,
|
195 |
+
use_readout=use_readout,
|
196 |
+
)
|
midas/backbones/levit.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import timm
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from .utils import activations, get_activation, Transpose
|
7 |
+
|
8 |
+
|
9 |
+
def forward_levit(pretrained, x):
|
10 |
+
pretrained.model.forward_features(x)
|
11 |
+
|
12 |
+
layer_1 = pretrained.activations["1"]
|
13 |
+
layer_2 = pretrained.activations["2"]
|
14 |
+
layer_3 = pretrained.activations["3"]
|
15 |
+
|
16 |
+
layer_1 = pretrained.act_postprocess1(layer_1)
|
17 |
+
layer_2 = pretrained.act_postprocess2(layer_2)
|
18 |
+
layer_3 = pretrained.act_postprocess3(layer_3)
|
19 |
+
|
20 |
+
return layer_1, layer_2, layer_3
|
21 |
+
|
22 |
+
|
23 |
+
def _make_levit_backbone(
|
24 |
+
model,
|
25 |
+
hooks=[3, 11, 21],
|
26 |
+
patch_grid=[14, 14]
|
27 |
+
):
|
28 |
+
pretrained = nn.Module()
|
29 |
+
|
30 |
+
pretrained.model = model
|
31 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
32 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
33 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
34 |
+
|
35 |
+
pretrained.activations = activations
|
36 |
+
|
37 |
+
patch_grid_size = np.array(patch_grid, dtype=int)
|
38 |
+
|
39 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
40 |
+
Transpose(1, 2),
|
41 |
+
nn.Unflatten(2, torch.Size(patch_grid_size.tolist()))
|
42 |
+
)
|
43 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
44 |
+
Transpose(1, 2),
|
45 |
+
nn.Unflatten(2, torch.Size((np.ceil(patch_grid_size / 2).astype(int)).tolist()))
|
46 |
+
)
|
47 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
48 |
+
Transpose(1, 2),
|
49 |
+
nn.Unflatten(2, torch.Size((np.ceil(patch_grid_size / 4).astype(int)).tolist()))
|
50 |
+
)
|
51 |
+
|
52 |
+
return pretrained
|
53 |
+
|
54 |
+
|
55 |
+
class ConvTransposeNorm(nn.Sequential):
|
56 |
+
"""
|
57 |
+
Modification of
|
58 |
+
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/levit.py: ConvNorm
|
59 |
+
such that ConvTranspose2d is used instead of Conv2d.
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self, in_chs, out_chs, kernel_size=1, stride=1, pad=0, dilation=1,
|
64 |
+
groups=1, bn_weight_init=1):
|
65 |
+
super().__init__()
|
66 |
+
self.add_module('c',
|
67 |
+
nn.ConvTranspose2d(in_chs, out_chs, kernel_size, stride, pad, dilation, groups, bias=False))
|
68 |
+
self.add_module('bn', nn.BatchNorm2d(out_chs))
|
69 |
+
|
70 |
+
nn.init.constant_(self.bn.weight, bn_weight_init)
|
71 |
+
|
72 |
+
@torch.no_grad()
|
73 |
+
def fuse(self):
|
74 |
+
c, bn = self._modules.values()
|
75 |
+
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
76 |
+
w = c.weight * w[:, None, None, None]
|
77 |
+
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5
|
78 |
+
m = nn.ConvTranspose2d(
|
79 |
+
w.size(1), w.size(0), w.shape[2:], stride=self.c.stride,
|
80 |
+
padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups)
|
81 |
+
m.weight.data.copy_(w)
|
82 |
+
m.bias.data.copy_(b)
|
83 |
+
return m
|
84 |
+
|
85 |
+
|
86 |
+
def stem_b4_transpose(in_chs, out_chs, activation):
|
87 |
+
"""
|
88 |
+
Modification of
|
89 |
+
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/levit.py: stem_b16
|
90 |
+
such that ConvTranspose2d is used instead of Conv2d and stem is also reduced to the half.
|
91 |
+
"""
|
92 |
+
return nn.Sequential(
|
93 |
+
ConvTransposeNorm(in_chs, out_chs, 3, 2, 1),
|
94 |
+
activation(),
|
95 |
+
ConvTransposeNorm(out_chs, out_chs // 2, 3, 2, 1),
|
96 |
+
activation())
|
97 |
+
|
98 |
+
|
99 |
+
def _make_pretrained_levit_384(pretrained, hooks=None):
|
100 |
+
model = timm.create_model("levit_384", pretrained=pretrained)
|
101 |
+
|
102 |
+
hooks = [3, 11, 21] if hooks == None else hooks
|
103 |
+
return _make_levit_backbone(
|
104 |
+
model,
|
105 |
+
hooks=hooks
|
106 |
+
)
|
midas/backbones/next_vit.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import timm
|
2 |
+
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
from pathlib import Path
|
6 |
+
from .utils import activations, forward_default, get_activation
|
7 |
+
|
8 |
+
from ..external.next_vit.classification.nextvit import *
|
9 |
+
|
10 |
+
|
11 |
+
def forward_next_vit(pretrained, x):
|
12 |
+
return forward_default(pretrained, x, "forward")
|
13 |
+
|
14 |
+
|
15 |
+
def _make_next_vit_backbone(
|
16 |
+
model,
|
17 |
+
hooks=[2, 6, 36, 39],
|
18 |
+
):
|
19 |
+
pretrained = nn.Module()
|
20 |
+
|
21 |
+
pretrained.model = model
|
22 |
+
pretrained.model.features[hooks[0]].register_forward_hook(get_activation("1"))
|
23 |
+
pretrained.model.features[hooks[1]].register_forward_hook(get_activation("2"))
|
24 |
+
pretrained.model.features[hooks[2]].register_forward_hook(get_activation("3"))
|
25 |
+
pretrained.model.features[hooks[3]].register_forward_hook(get_activation("4"))
|
26 |
+
|
27 |
+
pretrained.activations = activations
|
28 |
+
|
29 |
+
return pretrained
|
30 |
+
|
31 |
+
|
32 |
+
def _make_pretrained_next_vit_large_6m(hooks=None):
|
33 |
+
model = timm.create_model("nextvit_large")
|
34 |
+
|
35 |
+
hooks = [2, 6, 36, 39] if hooks == None else hooks
|
36 |
+
return _make_next_vit_backbone(
|
37 |
+
model,
|
38 |
+
hooks=hooks,
|
39 |
+
)
|
midas/backbones/swin.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import timm
|
2 |
+
|
3 |
+
from .swin_common import _make_swin_backbone
|
4 |
+
|
5 |
+
|
6 |
+
def _make_pretrained_swinl12_384(pretrained, hooks=None):
|
7 |
+
model = timm.create_model("swin_large_patch4_window12_384", pretrained=pretrained)
|
8 |
+
|
9 |
+
hooks = [1, 1, 17, 1] if hooks == None else hooks
|
10 |
+
return _make_swin_backbone(
|
11 |
+
model,
|
12 |
+
hooks=hooks
|
13 |
+
)
|
midas/backbones/swin2.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import timm
|
2 |
+
|
3 |
+
from .swin_common import _make_swin_backbone
|
4 |
+
|
5 |
+
|
6 |
+
def _make_pretrained_swin2l24_384(pretrained, hooks=None):
|
7 |
+
model = timm.create_model("swinv2_large_window12to24_192to384_22kft1k", pretrained=pretrained)
|
8 |
+
|
9 |
+
hooks = [1, 1, 17, 1] if hooks == None else hooks
|
10 |
+
return _make_swin_backbone(
|
11 |
+
model,
|
12 |
+
hooks=hooks
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
def _make_pretrained_swin2b24_384(pretrained, hooks=None):
|
17 |
+
model = timm.create_model("swinv2_base_window12to24_192to384_22kft1k", pretrained=pretrained)
|
18 |
+
|
19 |
+
hooks = [1, 1, 17, 1] if hooks == None else hooks
|
20 |
+
return _make_swin_backbone(
|
21 |
+
model,
|
22 |
+
hooks=hooks
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
def _make_pretrained_swin2t16_256(pretrained, hooks=None):
|
27 |
+
model = timm.create_model("swinv2_tiny_window16_256", pretrained=pretrained)
|
28 |
+
|
29 |
+
hooks = [1, 1, 5, 1] if hooks == None else hooks
|
30 |
+
return _make_swin_backbone(
|
31 |
+
model,
|
32 |
+
hooks=hooks,
|
33 |
+
patch_grid=[64, 64]
|
34 |
+
)
|
midas/backbones/swin_common.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
import torch.nn as nn
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from .utils import activations, forward_default, get_activation, Transpose
|
7 |
+
|
8 |
+
|
9 |
+
def forward_swin(pretrained, x):
|
10 |
+
return forward_default(pretrained, x)
|
11 |
+
|
12 |
+
|
13 |
+
def _make_swin_backbone(
|
14 |
+
model,
|
15 |
+
hooks=[1, 1, 17, 1],
|
16 |
+
patch_grid=[96, 96]
|
17 |
+
):
|
18 |
+
pretrained = nn.Module()
|
19 |
+
|
20 |
+
pretrained.model = model
|
21 |
+
pretrained.model.layers[0].blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
22 |
+
pretrained.model.layers[1].blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
23 |
+
pretrained.model.layers[2].blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
24 |
+
pretrained.model.layers[3].blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
25 |
+
|
26 |
+
pretrained.activations = activations
|
27 |
+
|
28 |
+
if hasattr(model, "patch_grid"):
|
29 |
+
used_patch_grid = model.patch_grid
|
30 |
+
else:
|
31 |
+
used_patch_grid = patch_grid
|
32 |
+
|
33 |
+
patch_grid_size = np.array(used_patch_grid, dtype=int)
|
34 |
+
|
35 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
36 |
+
Transpose(1, 2),
|
37 |
+
nn.Unflatten(2, torch.Size(patch_grid_size.tolist()))
|
38 |
+
)
|
39 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
40 |
+
Transpose(1, 2),
|
41 |
+
nn.Unflatten(2, torch.Size((patch_grid_size // 2).tolist()))
|
42 |
+
)
|
43 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
44 |
+
Transpose(1, 2),
|
45 |
+
nn.Unflatten(2, torch.Size((patch_grid_size // 4).tolist()))
|
46 |
+
)
|
47 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
48 |
+
Transpose(1, 2),
|
49 |
+
nn.Unflatten(2, torch.Size((patch_grid_size // 8).tolist()))
|
50 |
+
)
|
51 |
+
|
52 |
+
return pretrained
|
midas/backbones/utils.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
|
6 |
+
class Slice(nn.Module):
|
7 |
+
def __init__(self, start_index=1):
|
8 |
+
super(Slice, self).__init__()
|
9 |
+
self.start_index = start_index
|
10 |
+
|
11 |
+
def forward(self, x):
|
12 |
+
return x[:, self.start_index:]
|
13 |
+
|
14 |
+
|
15 |
+
class AddReadout(nn.Module):
|
16 |
+
def __init__(self, start_index=1):
|
17 |
+
super(AddReadout, self).__init__()
|
18 |
+
self.start_index = start_index
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
if self.start_index == 2:
|
22 |
+
readout = (x[:, 0] + x[:, 1]) / 2
|
23 |
+
else:
|
24 |
+
readout = x[:, 0]
|
25 |
+
return x[:, self.start_index:] + readout.unsqueeze(1)
|
26 |
+
|
27 |
+
|
28 |
+
class ProjectReadout(nn.Module):
|
29 |
+
def __init__(self, in_features, start_index=1):
|
30 |
+
super(ProjectReadout, self).__init__()
|
31 |
+
self.start_index = start_index
|
32 |
+
|
33 |
+
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index:])
|
37 |
+
features = torch.cat((x[:, self.start_index:], readout), -1)
|
38 |
+
|
39 |
+
return self.project(features)
|
40 |
+
|
41 |
+
|
42 |
+
class Transpose(nn.Module):
|
43 |
+
def __init__(self, dim0, dim1):
|
44 |
+
super(Transpose, self).__init__()
|
45 |
+
self.dim0 = dim0
|
46 |
+
self.dim1 = dim1
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
x = x.transpose(self.dim0, self.dim1)
|
50 |
+
return x
|
51 |
+
|
52 |
+
|
53 |
+
activations = {}
|
54 |
+
|
55 |
+
|
56 |
+
def get_activation(name):
|
57 |
+
def hook(model, input, output):
|
58 |
+
activations[name] = output
|
59 |
+
|
60 |
+
return hook
|
61 |
+
|
62 |
+
|
63 |
+
def forward_default(pretrained, x, function_name="forward_features"):
|
64 |
+
exec(f"pretrained.model.{function_name}(x)")
|
65 |
+
|
66 |
+
layer_1 = pretrained.activations["1"]
|
67 |
+
layer_2 = pretrained.activations["2"]
|
68 |
+
layer_3 = pretrained.activations["3"]
|
69 |
+
layer_4 = pretrained.activations["4"]
|
70 |
+
|
71 |
+
if hasattr(pretrained, "act_postprocess1"):
|
72 |
+
layer_1 = pretrained.act_postprocess1(layer_1)
|
73 |
+
if hasattr(pretrained, "act_postprocess2"):
|
74 |
+
layer_2 = pretrained.act_postprocess2(layer_2)
|
75 |
+
if hasattr(pretrained, "act_postprocess3"):
|
76 |
+
layer_3 = pretrained.act_postprocess3(layer_3)
|
77 |
+
if hasattr(pretrained, "act_postprocess4"):
|
78 |
+
layer_4 = pretrained.act_postprocess4(layer_4)
|
79 |
+
|
80 |
+
return layer_1, layer_2, layer_3, layer_4
|
81 |
+
|
82 |
+
|
83 |
+
def forward_adapted_unflatten(pretrained, x, function_name="forward_features"):
|
84 |
+
b, c, h, w = x.shape
|
85 |
+
|
86 |
+
exec(f"glob = pretrained.model.{function_name}(x)")
|
87 |
+
|
88 |
+
layer_1 = pretrained.activations["1"]
|
89 |
+
layer_2 = pretrained.activations["2"]
|
90 |
+
layer_3 = pretrained.activations["3"]
|
91 |
+
layer_4 = pretrained.activations["4"]
|
92 |
+
|
93 |
+
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
94 |
+
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
95 |
+
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
96 |
+
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
97 |
+
|
98 |
+
unflatten = nn.Sequential(
|
99 |
+
nn.Unflatten(
|
100 |
+
2,
|
101 |
+
torch.Size(
|
102 |
+
[
|
103 |
+
h // pretrained.model.patch_size[1],
|
104 |
+
w // pretrained.model.patch_size[0],
|
105 |
+
]
|
106 |
+
),
|
107 |
+
)
|
108 |
+
)
|
109 |
+
|
110 |
+
if layer_1.ndim == 3:
|
111 |
+
layer_1 = unflatten(layer_1)
|
112 |
+
if layer_2.ndim == 3:
|
113 |
+
layer_2 = unflatten(layer_2)
|
114 |
+
if layer_3.ndim == 3:
|
115 |
+
layer_3 = unflatten(layer_3)
|
116 |
+
if layer_4.ndim == 3:
|
117 |
+
layer_4 = unflatten(layer_4)
|
118 |
+
|
119 |
+
layer_1 = pretrained.act_postprocess1[3: len(pretrained.act_postprocess1)](layer_1)
|
120 |
+
layer_2 = pretrained.act_postprocess2[3: len(pretrained.act_postprocess2)](layer_2)
|
121 |
+
layer_3 = pretrained.act_postprocess3[3: len(pretrained.act_postprocess3)](layer_3)
|
122 |
+
layer_4 = pretrained.act_postprocess4[3: len(pretrained.act_postprocess4)](layer_4)
|
123 |
+
|
124 |
+
return layer_1, layer_2, layer_3, layer_4
|
125 |
+
|
126 |
+
|
127 |
+
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
128 |
+
if use_readout == "ignore":
|
129 |
+
readout_oper = [Slice(start_index)] * len(features)
|
130 |
+
elif use_readout == "add":
|
131 |
+
readout_oper = [AddReadout(start_index)] * len(features)
|
132 |
+
elif use_readout == "project":
|
133 |
+
readout_oper = [
|
134 |
+
ProjectReadout(vit_features, start_index) for out_feat in features
|
135 |
+
]
|
136 |
+
else:
|
137 |
+
assert (
|
138 |
+
False
|
139 |
+
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
140 |
+
|
141 |
+
return readout_oper
|
142 |
+
|
143 |
+
|
144 |
+
def make_backbone_default(
|
145 |
+
model,
|
146 |
+
features=[96, 192, 384, 768],
|
147 |
+
size=[384, 384],
|
148 |
+
hooks=[2, 5, 8, 11],
|
149 |
+
vit_features=768,
|
150 |
+
use_readout="ignore",
|
151 |
+
start_index=1,
|
152 |
+
start_index_readout=1,
|
153 |
+
):
|
154 |
+
pretrained = nn.Module()
|
155 |
+
|
156 |
+
pretrained.model = model
|
157 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
158 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
159 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
160 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
161 |
+
|
162 |
+
pretrained.activations = activations
|
163 |
+
|
164 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index_readout)
|
165 |
+
|
166 |
+
# 32, 48, 136, 384
|
167 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
168 |
+
readout_oper[0],
|
169 |
+
Transpose(1, 2),
|
170 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
171 |
+
nn.Conv2d(
|
172 |
+
in_channels=vit_features,
|
173 |
+
out_channels=features[0],
|
174 |
+
kernel_size=1,
|
175 |
+
stride=1,
|
176 |
+
padding=0,
|
177 |
+
),
|
178 |
+
nn.ConvTranspose2d(
|
179 |
+
in_channels=features[0],
|
180 |
+
out_channels=features[0],
|
181 |
+
kernel_size=4,
|
182 |
+
stride=4,
|
183 |
+
padding=0,
|
184 |
+
bias=True,
|
185 |
+
dilation=1,
|
186 |
+
groups=1,
|
187 |
+
),
|
188 |
+
)
|
189 |
+
|
190 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
191 |
+
readout_oper[1],
|
192 |
+
Transpose(1, 2),
|
193 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
194 |
+
nn.Conv2d(
|
195 |
+
in_channels=vit_features,
|
196 |
+
out_channels=features[1],
|
197 |
+
kernel_size=1,
|
198 |
+
stride=1,
|
199 |
+
padding=0,
|
200 |
+
),
|
201 |
+
nn.ConvTranspose2d(
|
202 |
+
in_channels=features[1],
|
203 |
+
out_channels=features[1],
|
204 |
+
kernel_size=2,
|
205 |
+
stride=2,
|
206 |
+
padding=0,
|
207 |
+
bias=True,
|
208 |
+
dilation=1,
|
209 |
+
groups=1,
|
210 |
+
),
|
211 |
+
)
|
212 |
+
|
213 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
214 |
+
readout_oper[2],
|
215 |
+
Transpose(1, 2),
|
216 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
217 |
+
nn.Conv2d(
|
218 |
+
in_channels=vit_features,
|
219 |
+
out_channels=features[2],
|
220 |
+
kernel_size=1,
|
221 |
+
stride=1,
|
222 |
+
padding=0,
|
223 |
+
),
|
224 |
+
)
|
225 |
+
|
226 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
227 |
+
readout_oper[3],
|
228 |
+
Transpose(1, 2),
|
229 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
230 |
+
nn.Conv2d(
|
231 |
+
in_channels=vit_features,
|
232 |
+
out_channels=features[3],
|
233 |
+
kernel_size=1,
|
234 |
+
stride=1,
|
235 |
+
padding=0,
|
236 |
+
),
|
237 |
+
nn.Conv2d(
|
238 |
+
in_channels=features[3],
|
239 |
+
out_channels=features[3],
|
240 |
+
kernel_size=3,
|
241 |
+
stride=2,
|
242 |
+
padding=1,
|
243 |
+
),
|
244 |
+
)
|
245 |
+
|
246 |
+
pretrained.model.start_index = start_index
|
247 |
+
pretrained.model.patch_size = [16, 16]
|
248 |
+
|
249 |
+
return pretrained
|
midas/backbones/vit.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import timm
|
4 |
+
import types
|
5 |
+
import math
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from .utils import (activations, forward_adapted_unflatten, get_activation, get_readout_oper,
|
9 |
+
make_backbone_default, Transpose)
|
10 |
+
|
11 |
+
|
12 |
+
def forward_vit(pretrained, x):
|
13 |
+
return forward_adapted_unflatten(pretrained, x, "forward_flex")
|
14 |
+
|
15 |
+
|
16 |
+
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
17 |
+
posemb_tok, posemb_grid = (
|
18 |
+
posemb[:, : self.start_index],
|
19 |
+
posemb[0, self.start_index:],
|
20 |
+
)
|
21 |
+
|
22 |
+
gs_old = int(math.sqrt(len(posemb_grid)))
|
23 |
+
|
24 |
+
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
25 |
+
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
26 |
+
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
27 |
+
|
28 |
+
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
29 |
+
|
30 |
+
return posemb
|
31 |
+
|
32 |
+
|
33 |
+
def forward_flex(self, x):
|
34 |
+
b, c, h, w = x.shape
|
35 |
+
|
36 |
+
pos_embed = self._resize_pos_embed(
|
37 |
+
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
38 |
+
)
|
39 |
+
|
40 |
+
B = x.shape[0]
|
41 |
+
|
42 |
+
if hasattr(self.patch_embed, "backbone"):
|
43 |
+
x = self.patch_embed.backbone(x)
|
44 |
+
if isinstance(x, (list, tuple)):
|
45 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
46 |
+
|
47 |
+
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
48 |
+
|
49 |
+
if getattr(self, "dist_token", None) is not None:
|
50 |
+
cls_tokens = self.cls_token.expand(
|
51 |
+
B, -1, -1
|
52 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
53 |
+
dist_token = self.dist_token.expand(B, -1, -1)
|
54 |
+
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
55 |
+
else:
|
56 |
+
if self.no_embed_class:
|
57 |
+
x = x + pos_embed
|
58 |
+
cls_tokens = self.cls_token.expand(
|
59 |
+
B, -1, -1
|
60 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
61 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
62 |
+
|
63 |
+
if not self.no_embed_class:
|
64 |
+
x = x + pos_embed
|
65 |
+
x = self.pos_drop(x)
|
66 |
+
|
67 |
+
for blk in self.blocks:
|
68 |
+
x = blk(x)
|
69 |
+
|
70 |
+
x = self.norm(x)
|
71 |
+
|
72 |
+
return x
|
73 |
+
|
74 |
+
|
75 |
+
def _make_vit_b16_backbone(
|
76 |
+
model,
|
77 |
+
features=[96, 192, 384, 768],
|
78 |
+
size=[384, 384],
|
79 |
+
hooks=[2, 5, 8, 11],
|
80 |
+
vit_features=768,
|
81 |
+
use_readout="ignore",
|
82 |
+
start_index=1,
|
83 |
+
start_index_readout=1,
|
84 |
+
):
|
85 |
+
pretrained = make_backbone_default(model, features, size, hooks, vit_features, use_readout, start_index,
|
86 |
+
start_index_readout)
|
87 |
+
|
88 |
+
# We inject this function into the VisionTransformer instances so that
|
89 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
90 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
91 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
92 |
+
_resize_pos_embed, pretrained.model
|
93 |
+
)
|
94 |
+
|
95 |
+
return pretrained
|
96 |
+
|
97 |
+
|
98 |
+
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
|
99 |
+
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
100 |
+
|
101 |
+
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
102 |
+
return _make_vit_b16_backbone(
|
103 |
+
model,
|
104 |
+
features=[256, 512, 1024, 1024],
|
105 |
+
hooks=hooks,
|
106 |
+
vit_features=1024,
|
107 |
+
use_readout=use_readout,
|
108 |
+
)
|
109 |
+
|
110 |
+
|
111 |
+
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
|
112 |
+
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
113 |
+
|
114 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
115 |
+
return _make_vit_b16_backbone(
|
116 |
+
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
117 |
+
)
|
118 |
+
|
119 |
+
|
120 |
+
def _make_vit_b_rn50_backbone(
|
121 |
+
model,
|
122 |
+
features=[256, 512, 768, 768],
|
123 |
+
size=[384, 384],
|
124 |
+
hooks=[0, 1, 8, 11],
|
125 |
+
vit_features=768,
|
126 |
+
patch_size=[16, 16],
|
127 |
+
number_stages=2,
|
128 |
+
use_vit_only=False,
|
129 |
+
use_readout="ignore",
|
130 |
+
start_index=1,
|
131 |
+
):
|
132 |
+
pretrained = nn.Module()
|
133 |
+
|
134 |
+
pretrained.model = model
|
135 |
+
|
136 |
+
used_number_stages = 0 if use_vit_only else number_stages
|
137 |
+
for s in range(used_number_stages):
|
138 |
+
pretrained.model.patch_embed.backbone.stages[s].register_forward_hook(
|
139 |
+
get_activation(str(s + 1))
|
140 |
+
)
|
141 |
+
for s in range(used_number_stages, 4):
|
142 |
+
pretrained.model.blocks[hooks[s]].register_forward_hook(get_activation(str(s + 1)))
|
143 |
+
|
144 |
+
pretrained.activations = activations
|
145 |
+
|
146 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
147 |
+
|
148 |
+
for s in range(used_number_stages):
|
149 |
+
value = nn.Sequential(nn.Identity(), nn.Identity(), nn.Identity())
|
150 |
+
exec(f"pretrained.act_postprocess{s + 1}=value")
|
151 |
+
for s in range(used_number_stages, 4):
|
152 |
+
if s < number_stages:
|
153 |
+
final_layer = nn.ConvTranspose2d(
|
154 |
+
in_channels=features[s],
|
155 |
+
out_channels=features[s],
|
156 |
+
kernel_size=4 // (2 ** s),
|
157 |
+
stride=4 // (2 ** s),
|
158 |
+
padding=0,
|
159 |
+
bias=True,
|
160 |
+
dilation=1,
|
161 |
+
groups=1,
|
162 |
+
)
|
163 |
+
elif s > number_stages:
|
164 |
+
final_layer = nn.Conv2d(
|
165 |
+
in_channels=features[3],
|
166 |
+
out_channels=features[3],
|
167 |
+
kernel_size=3,
|
168 |
+
stride=2,
|
169 |
+
padding=1,
|
170 |
+
)
|
171 |
+
else:
|
172 |
+
final_layer = None
|
173 |
+
|
174 |
+
layers = [
|
175 |
+
readout_oper[s],
|
176 |
+
Transpose(1, 2),
|
177 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
178 |
+
nn.Conv2d(
|
179 |
+
in_channels=vit_features,
|
180 |
+
out_channels=features[s],
|
181 |
+
kernel_size=1,
|
182 |
+
stride=1,
|
183 |
+
padding=0,
|
184 |
+
),
|
185 |
+
]
|
186 |
+
if final_layer is not None:
|
187 |
+
layers.append(final_layer)
|
188 |
+
|
189 |
+
value = nn.Sequential(*layers)
|
190 |
+
exec(f"pretrained.act_postprocess{s + 1}=value")
|
191 |
+
|
192 |
+
pretrained.model.start_index = start_index
|
193 |
+
pretrained.model.patch_size = patch_size
|
194 |
+
|
195 |
+
# We inject this function into the VisionTransformer instances so that
|
196 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
197 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
198 |
+
|
199 |
+
# We inject this function into the VisionTransformer instances so that
|
200 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
201 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
202 |
+
_resize_pos_embed, pretrained.model
|
203 |
+
)
|
204 |
+
|
205 |
+
return pretrained
|
206 |
+
|
207 |
+
|
208 |
+
def _make_pretrained_vitb_rn50_384(
|
209 |
+
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
|
210 |
+
):
|
211 |
+
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
212 |
+
|
213 |
+
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
214 |
+
return _make_vit_b_rn50_backbone(
|
215 |
+
model,
|
216 |
+
features=[256, 512, 768, 768],
|
217 |
+
size=[384, 384],
|
218 |
+
hooks=hooks,
|
219 |
+
use_vit_only=use_vit_only,
|
220 |
+
use_readout=use_readout,
|
221 |
+
)
|
midas/base_model.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class BaseModel(torch.nn.Module):
|
5 |
+
def load(self, path):
|
6 |
+
"""Load model from file.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
path (str): file path
|
10 |
+
"""
|
11 |
+
parameters = torch.load(path, map_location=torch.device('cpu'))
|
12 |
+
|
13 |
+
if "optimizer" in parameters:
|
14 |
+
parameters = parameters["model"]
|
15 |
+
|
16 |
+
self.load_state_dict(parameters)
|
midas/blocks.py
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from .backbones.beit import (
|
5 |
+
_make_pretrained_beitl16_512,
|
6 |
+
_make_pretrained_beitl16_384,
|
7 |
+
_make_pretrained_beitb16_384,
|
8 |
+
forward_beit,
|
9 |
+
)
|
10 |
+
from .backbones.swin_common import (
|
11 |
+
forward_swin,
|
12 |
+
)
|
13 |
+
from .backbones.swin2 import (
|
14 |
+
_make_pretrained_swin2l24_384,
|
15 |
+
_make_pretrained_swin2b24_384,
|
16 |
+
_make_pretrained_swin2t16_256,
|
17 |
+
)
|
18 |
+
from .backbones.swin import (
|
19 |
+
_make_pretrained_swinl12_384,
|
20 |
+
)
|
21 |
+
from .backbones.levit import (
|
22 |
+
_make_pretrained_levit_384,
|
23 |
+
forward_levit,
|
24 |
+
)
|
25 |
+
from .backbones.vit import (
|
26 |
+
_make_pretrained_vitb_rn50_384,
|
27 |
+
_make_pretrained_vitl16_384,
|
28 |
+
_make_pretrained_vitb16_384,
|
29 |
+
forward_vit,
|
30 |
+
)
|
31 |
+
|
32 |
+
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None,
|
33 |
+
use_vit_only=False, use_readout="ignore", in_features=[96, 256, 512, 1024]):
|
34 |
+
if backbone == "beitl16_512":
|
35 |
+
pretrained = _make_pretrained_beitl16_512(
|
36 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
37 |
+
)
|
38 |
+
scratch = _make_scratch(
|
39 |
+
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
40 |
+
) # BEiT_512-L (backbone)
|
41 |
+
elif backbone == "beitl16_384":
|
42 |
+
pretrained = _make_pretrained_beitl16_384(
|
43 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
44 |
+
)
|
45 |
+
scratch = _make_scratch(
|
46 |
+
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
47 |
+
) # BEiT_384-L (backbone)
|
48 |
+
elif backbone == "beitb16_384":
|
49 |
+
pretrained = _make_pretrained_beitb16_384(
|
50 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
51 |
+
)
|
52 |
+
scratch = _make_scratch(
|
53 |
+
[96, 192, 384, 768], features, groups=groups, expand=expand
|
54 |
+
) # BEiT_384-B (backbone)
|
55 |
+
elif backbone == "swin2l24_384":
|
56 |
+
pretrained = _make_pretrained_swin2l24_384(
|
57 |
+
use_pretrained, hooks=hooks
|
58 |
+
)
|
59 |
+
scratch = _make_scratch(
|
60 |
+
[192, 384, 768, 1536], features, groups=groups, expand=expand
|
61 |
+
) # Swin2-L/12to24 (backbone)
|
62 |
+
elif backbone == "swin2b24_384":
|
63 |
+
pretrained = _make_pretrained_swin2b24_384(
|
64 |
+
use_pretrained, hooks=hooks
|
65 |
+
)
|
66 |
+
scratch = _make_scratch(
|
67 |
+
[128, 256, 512, 1024], features, groups=groups, expand=expand
|
68 |
+
) # Swin2-B/12to24 (backbone)
|
69 |
+
elif backbone == "swin2t16_256":
|
70 |
+
pretrained = _make_pretrained_swin2t16_256(
|
71 |
+
use_pretrained, hooks=hooks
|
72 |
+
)
|
73 |
+
scratch = _make_scratch(
|
74 |
+
[96, 192, 384, 768], features, groups=groups, expand=expand
|
75 |
+
) # Swin2-T/16 (backbone)
|
76 |
+
elif backbone == "swinl12_384":
|
77 |
+
pretrained = _make_pretrained_swinl12_384(
|
78 |
+
use_pretrained, hooks=hooks
|
79 |
+
)
|
80 |
+
scratch = _make_scratch(
|
81 |
+
[192, 384, 768, 1536], features, groups=groups, expand=expand
|
82 |
+
) # Swin-L/12 (backbone)
|
83 |
+
elif backbone == "next_vit_large_6m":
|
84 |
+
from .backbones.next_vit import _make_pretrained_next_vit_large_6m
|
85 |
+
pretrained = _make_pretrained_next_vit_large_6m(hooks=hooks)
|
86 |
+
scratch = _make_scratch(
|
87 |
+
in_features, features, groups=groups, expand=expand
|
88 |
+
) # Next-ViT-L on ImageNet-1K-6M (backbone)
|
89 |
+
elif backbone == "levit_384":
|
90 |
+
pretrained = _make_pretrained_levit_384(
|
91 |
+
use_pretrained, hooks=hooks
|
92 |
+
)
|
93 |
+
scratch = _make_scratch(
|
94 |
+
[384, 512, 768], features, groups=groups, expand=expand
|
95 |
+
) # LeViT 384 (backbone)
|
96 |
+
elif backbone == "vitl16_384":
|
97 |
+
pretrained = _make_pretrained_vitl16_384(
|
98 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
99 |
+
)
|
100 |
+
scratch = _make_scratch(
|
101 |
+
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
102 |
+
) # ViT-L/16 - 85.0% Top1 (backbone)
|
103 |
+
elif backbone == "vitb_rn50_384":
|
104 |
+
pretrained = _make_pretrained_vitb_rn50_384(
|
105 |
+
use_pretrained,
|
106 |
+
hooks=hooks,
|
107 |
+
use_vit_only=use_vit_only,
|
108 |
+
use_readout=use_readout,
|
109 |
+
)
|
110 |
+
scratch = _make_scratch(
|
111 |
+
[256, 512, 768, 768], features, groups=groups, expand=expand
|
112 |
+
) # ViT-H/16 - 85.0% Top1 (backbone)
|
113 |
+
elif backbone == "vitb16_384":
|
114 |
+
pretrained = _make_pretrained_vitb16_384(
|
115 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
116 |
+
)
|
117 |
+
scratch = _make_scratch(
|
118 |
+
[96, 192, 384, 768], features, groups=groups, expand=expand
|
119 |
+
) # ViT-B/16 - 84.6% Top1 (backbone)
|
120 |
+
elif backbone == "resnext101_wsl":
|
121 |
+
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
122 |
+
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
|
123 |
+
elif backbone == "efficientnet_lite3":
|
124 |
+
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
|
125 |
+
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
|
126 |
+
else:
|
127 |
+
print(f"Backbone '{backbone}' not implemented")
|
128 |
+
assert False
|
129 |
+
|
130 |
+
return pretrained, scratch
|
131 |
+
|
132 |
+
|
133 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
134 |
+
scratch = nn.Module()
|
135 |
+
|
136 |
+
out_shape1 = out_shape
|
137 |
+
out_shape2 = out_shape
|
138 |
+
out_shape3 = out_shape
|
139 |
+
if len(in_shape) >= 4:
|
140 |
+
out_shape4 = out_shape
|
141 |
+
|
142 |
+
if expand:
|
143 |
+
out_shape1 = out_shape
|
144 |
+
out_shape2 = out_shape*2
|
145 |
+
out_shape3 = out_shape*4
|
146 |
+
if len(in_shape) >= 4:
|
147 |
+
out_shape4 = out_shape*8
|
148 |
+
|
149 |
+
scratch.layer1_rn = nn.Conv2d(
|
150 |
+
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
151 |
+
)
|
152 |
+
scratch.layer2_rn = nn.Conv2d(
|
153 |
+
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
154 |
+
)
|
155 |
+
scratch.layer3_rn = nn.Conv2d(
|
156 |
+
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
157 |
+
)
|
158 |
+
if len(in_shape) >= 4:
|
159 |
+
scratch.layer4_rn = nn.Conv2d(
|
160 |
+
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
161 |
+
)
|
162 |
+
|
163 |
+
return scratch
|
164 |
+
|
165 |
+
|
166 |
+
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
|
167 |
+
efficientnet = torch.hub.load(
|
168 |
+
"rwightman/gen-efficientnet-pytorch",
|
169 |
+
"tf_efficientnet_lite3",
|
170 |
+
pretrained=use_pretrained,
|
171 |
+
exportable=exportable
|
172 |
+
)
|
173 |
+
return _make_efficientnet_backbone(efficientnet)
|
174 |
+
|
175 |
+
|
176 |
+
def _make_efficientnet_backbone(effnet):
|
177 |
+
pretrained = nn.Module()
|
178 |
+
|
179 |
+
pretrained.layer1 = nn.Sequential(
|
180 |
+
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
|
181 |
+
)
|
182 |
+
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
|
183 |
+
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
|
184 |
+
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
|
185 |
+
|
186 |
+
return pretrained
|
187 |
+
|
188 |
+
|
189 |
+
def _make_resnet_backbone(resnet):
|
190 |
+
pretrained = nn.Module()
|
191 |
+
pretrained.layer1 = nn.Sequential(
|
192 |
+
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
193 |
+
)
|
194 |
+
|
195 |
+
pretrained.layer2 = resnet.layer2
|
196 |
+
pretrained.layer3 = resnet.layer3
|
197 |
+
pretrained.layer4 = resnet.layer4
|
198 |
+
|
199 |
+
return pretrained
|
200 |
+
|
201 |
+
|
202 |
+
def _make_pretrained_resnext101_wsl(use_pretrained):
|
203 |
+
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
204 |
+
return _make_resnet_backbone(resnet)
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
class Interpolate(nn.Module):
|
209 |
+
"""Interpolation module.
|
210 |
+
"""
|
211 |
+
|
212 |
+
def __init__(self, scale_factor, mode, align_corners=False):
|
213 |
+
"""Init.
|
214 |
+
|
215 |
+
Args:
|
216 |
+
scale_factor (float): scaling
|
217 |
+
mode (str): interpolation mode
|
218 |
+
"""
|
219 |
+
super(Interpolate, self).__init__()
|
220 |
+
|
221 |
+
self.interp = nn.functional.interpolate
|
222 |
+
self.scale_factor = scale_factor
|
223 |
+
self.mode = mode
|
224 |
+
self.align_corners = align_corners
|
225 |
+
|
226 |
+
def forward(self, x):
|
227 |
+
"""Forward pass.
|
228 |
+
|
229 |
+
Args:
|
230 |
+
x (tensor): input
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
tensor: interpolated data
|
234 |
+
"""
|
235 |
+
|
236 |
+
x = self.interp(
|
237 |
+
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
|
238 |
+
)
|
239 |
+
|
240 |
+
return x
|
241 |
+
|
242 |
+
|
243 |
+
class ResidualConvUnit(nn.Module):
|
244 |
+
"""Residual convolution module.
|
245 |
+
"""
|
246 |
+
|
247 |
+
def __init__(self, features):
|
248 |
+
"""Init.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
features (int): number of features
|
252 |
+
"""
|
253 |
+
super().__init__()
|
254 |
+
|
255 |
+
self.conv1 = nn.Conv2d(
|
256 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
257 |
+
)
|
258 |
+
|
259 |
+
self.conv2 = nn.Conv2d(
|
260 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
261 |
+
)
|
262 |
+
|
263 |
+
self.relu = nn.ReLU(inplace=True)
|
264 |
+
|
265 |
+
def forward(self, x):
|
266 |
+
"""Forward pass.
|
267 |
+
|
268 |
+
Args:
|
269 |
+
x (tensor): input
|
270 |
+
|
271 |
+
Returns:
|
272 |
+
tensor: output
|
273 |
+
"""
|
274 |
+
out = self.relu(x)
|
275 |
+
out = self.conv1(out)
|
276 |
+
out = self.relu(out)
|
277 |
+
out = self.conv2(out)
|
278 |
+
|
279 |
+
return out + x
|
280 |
+
|
281 |
+
|
282 |
+
class FeatureFusionBlock(nn.Module):
|
283 |
+
"""Feature fusion block.
|
284 |
+
"""
|
285 |
+
|
286 |
+
def __init__(self, features):
|
287 |
+
"""Init.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
features (int): number of features
|
291 |
+
"""
|
292 |
+
super(FeatureFusionBlock, self).__init__()
|
293 |
+
|
294 |
+
self.resConfUnit1 = ResidualConvUnit(features)
|
295 |
+
self.resConfUnit2 = ResidualConvUnit(features)
|
296 |
+
|
297 |
+
def forward(self, *xs):
|
298 |
+
"""Forward pass.
|
299 |
+
|
300 |
+
Returns:
|
301 |
+
tensor: output
|
302 |
+
"""
|
303 |
+
output = xs[0]
|
304 |
+
|
305 |
+
if len(xs) == 2:
|
306 |
+
output += self.resConfUnit1(xs[1])
|
307 |
+
|
308 |
+
output = self.resConfUnit2(output)
|
309 |
+
|
310 |
+
output = nn.functional.interpolate(
|
311 |
+
output, scale_factor=2, mode="bilinear", align_corners=True
|
312 |
+
)
|
313 |
+
|
314 |
+
return output
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
|
319 |
+
class ResidualConvUnit_custom(nn.Module):
|
320 |
+
"""Residual convolution module.
|
321 |
+
"""
|
322 |
+
|
323 |
+
def __init__(self, features, activation, bn):
|
324 |
+
"""Init.
|
325 |
+
|
326 |
+
Args:
|
327 |
+
features (int): number of features
|
328 |
+
"""
|
329 |
+
super().__init__()
|
330 |
+
|
331 |
+
self.bn = bn
|
332 |
+
|
333 |
+
self.groups=1
|
334 |
+
|
335 |
+
self.conv1 = nn.Conv2d(
|
336 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
337 |
+
)
|
338 |
+
|
339 |
+
self.conv2 = nn.Conv2d(
|
340 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
341 |
+
)
|
342 |
+
|
343 |
+
if self.bn==True:
|
344 |
+
self.bn1 = nn.BatchNorm2d(features)
|
345 |
+
self.bn2 = nn.BatchNorm2d(features)
|
346 |
+
|
347 |
+
self.activation = activation
|
348 |
+
|
349 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
350 |
+
|
351 |
+
def forward(self, x):
|
352 |
+
"""Forward pass.
|
353 |
+
|
354 |
+
Args:
|
355 |
+
x (tensor): input
|
356 |
+
|
357 |
+
Returns:
|
358 |
+
tensor: output
|
359 |
+
"""
|
360 |
+
|
361 |
+
out = self.activation(x)
|
362 |
+
out = self.conv1(out)
|
363 |
+
if self.bn==True:
|
364 |
+
out = self.bn1(out)
|
365 |
+
|
366 |
+
out = self.activation(out)
|
367 |
+
out = self.conv2(out)
|
368 |
+
if self.bn==True:
|
369 |
+
out = self.bn2(out)
|
370 |
+
|
371 |
+
if self.groups > 1:
|
372 |
+
out = self.conv_merge(out)
|
373 |
+
|
374 |
+
return self.skip_add.add(out, x)
|
375 |
+
|
376 |
+
# return out + x
|
377 |
+
|
378 |
+
|
379 |
+
class FeatureFusionBlock_custom(nn.Module):
|
380 |
+
"""Feature fusion block.
|
381 |
+
"""
|
382 |
+
|
383 |
+
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None):
|
384 |
+
"""Init.
|
385 |
+
|
386 |
+
Args:
|
387 |
+
features (int): number of features
|
388 |
+
"""
|
389 |
+
super(FeatureFusionBlock_custom, self).__init__()
|
390 |
+
|
391 |
+
self.deconv = deconv
|
392 |
+
self.align_corners = align_corners
|
393 |
+
|
394 |
+
self.groups=1
|
395 |
+
|
396 |
+
self.expand = expand
|
397 |
+
out_features = features
|
398 |
+
if self.expand==True:
|
399 |
+
out_features = features//2
|
400 |
+
|
401 |
+
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
402 |
+
|
403 |
+
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
404 |
+
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
405 |
+
|
406 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
407 |
+
|
408 |
+
self.size=size
|
409 |
+
|
410 |
+
def forward(self, *xs, size=None):
|
411 |
+
"""Forward pass.
|
412 |
+
|
413 |
+
Returns:
|
414 |
+
tensor: output
|
415 |
+
"""
|
416 |
+
output = xs[0]
|
417 |
+
|
418 |
+
if len(xs) == 2:
|
419 |
+
res = self.resConfUnit1(xs[1])
|
420 |
+
output = self.skip_add.add(output, res)
|
421 |
+
# output += res
|
422 |
+
|
423 |
+
output = self.resConfUnit2(output)
|
424 |
+
|
425 |
+
if (size is None) and (self.size is None):
|
426 |
+
modifier = {"scale_factor": 2}
|
427 |
+
elif size is None:
|
428 |
+
modifier = {"size": self.size}
|
429 |
+
else:
|
430 |
+
modifier = {"size": size}
|
431 |
+
|
432 |
+
output = nn.functional.interpolate(
|
433 |
+
output, **modifier, mode="bilinear", align_corners=self.align_corners
|
434 |
+
)
|
435 |
+
|
436 |
+
output = self.out_conv(output)
|
437 |
+
|
438 |
+
return output
|
439 |
+
|
midas/dpt_depth.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from .base_model import BaseModel
|
5 |
+
from .blocks import (
|
6 |
+
FeatureFusionBlock_custom,
|
7 |
+
Interpolate,
|
8 |
+
_make_encoder,
|
9 |
+
forward_beit,
|
10 |
+
forward_swin,
|
11 |
+
forward_levit,
|
12 |
+
forward_vit,
|
13 |
+
)
|
14 |
+
from .backbones.levit import stem_b4_transpose
|
15 |
+
from timm.models.layers import get_act_layer
|
16 |
+
|
17 |
+
|
18 |
+
def _make_fusion_block(features, use_bn, size = None):
|
19 |
+
return FeatureFusionBlock_custom(
|
20 |
+
features,
|
21 |
+
nn.ReLU(False),
|
22 |
+
deconv=False,
|
23 |
+
bn=use_bn,
|
24 |
+
expand=False,
|
25 |
+
align_corners=True,
|
26 |
+
size=size,
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
class DPT(BaseModel):
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
head,
|
34 |
+
features=256,
|
35 |
+
backbone="vitb_rn50_384",
|
36 |
+
readout="project",
|
37 |
+
channels_last=False,
|
38 |
+
use_bn=False,
|
39 |
+
**kwargs
|
40 |
+
):
|
41 |
+
|
42 |
+
super(DPT, self).__init__()
|
43 |
+
|
44 |
+
self.channels_last = channels_last
|
45 |
+
|
46 |
+
# For the Swin, Swin 2, LeViT and Next-ViT Transformers, the hierarchical architectures prevent setting the
|
47 |
+
# hooks freely. Instead, the hooks have to be chosen according to the ranges specified in the comments.
|
48 |
+
hooks = {
|
49 |
+
"beitl16_512": [5, 11, 17, 23],
|
50 |
+
"beitl16_384": [5, 11, 17, 23],
|
51 |
+
"beitb16_384": [2, 5, 8, 11],
|
52 |
+
"swin2l24_384": [1, 1, 17, 1], # Allowed ranges: [0, 1], [0, 1], [ 0, 17], [ 0, 1]
|
53 |
+
"swin2b24_384": [1, 1, 17, 1], # [0, 1], [0, 1], [ 0, 17], [ 0, 1]
|
54 |
+
"swin2t16_256": [1, 1, 5, 1], # [0, 1], [0, 1], [ 0, 5], [ 0, 1]
|
55 |
+
"swinl12_384": [1, 1, 17, 1], # [0, 1], [0, 1], [ 0, 17], [ 0, 1]
|
56 |
+
"next_vit_large_6m": [2, 6, 36, 39], # [0, 2], [3, 6], [ 7, 36], [37, 39]
|
57 |
+
"levit_384": [3, 11, 21], # [0, 3], [6, 11], [14, 21]
|
58 |
+
"vitb_rn50_384": [0, 1, 8, 11],
|
59 |
+
"vitb16_384": [2, 5, 8, 11],
|
60 |
+
"vitl16_384": [5, 11, 17, 23],
|
61 |
+
}[backbone]
|
62 |
+
|
63 |
+
if "next_vit" in backbone:
|
64 |
+
in_features = {
|
65 |
+
"next_vit_large_6m": [96, 256, 512, 1024],
|
66 |
+
}[backbone]
|
67 |
+
else:
|
68 |
+
in_features = None
|
69 |
+
|
70 |
+
# Instantiate backbone and reassemble blocks
|
71 |
+
self.pretrained, self.scratch = _make_encoder(
|
72 |
+
backbone,
|
73 |
+
features,
|
74 |
+
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
75 |
+
groups=1,
|
76 |
+
expand=False,
|
77 |
+
exportable=False,
|
78 |
+
hooks=hooks,
|
79 |
+
use_readout=readout,
|
80 |
+
in_features=in_features,
|
81 |
+
)
|
82 |
+
|
83 |
+
self.number_layers = len(hooks) if hooks is not None else 4
|
84 |
+
size_refinenet3 = None
|
85 |
+
self.scratch.stem_transpose = None
|
86 |
+
|
87 |
+
if "beit" in backbone:
|
88 |
+
self.forward_transformer = forward_beit
|
89 |
+
elif "swin" in backbone:
|
90 |
+
self.forward_transformer = forward_swin
|
91 |
+
elif "next_vit" in backbone:
|
92 |
+
from .backbones.next_vit import forward_next_vit
|
93 |
+
self.forward_transformer = forward_next_vit
|
94 |
+
elif "levit" in backbone:
|
95 |
+
self.forward_transformer = forward_levit
|
96 |
+
size_refinenet3 = 7
|
97 |
+
self.scratch.stem_transpose = stem_b4_transpose(256, 128, get_act_layer("hard_swish"))
|
98 |
+
else:
|
99 |
+
self.forward_transformer = forward_vit
|
100 |
+
|
101 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
102 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
103 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn, size_refinenet3)
|
104 |
+
if self.number_layers >= 4:
|
105 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
106 |
+
|
107 |
+
self.scratch.output_conv = head
|
108 |
+
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
if self.channels_last == True:
|
112 |
+
x.contiguous(memory_format=torch.channels_last)
|
113 |
+
|
114 |
+
layers = self.forward_transformer(self.pretrained, x)
|
115 |
+
if self.number_layers == 3:
|
116 |
+
layer_1, layer_2, layer_3 = layers
|
117 |
+
else:
|
118 |
+
layer_1, layer_2, layer_3, layer_4 = layers
|
119 |
+
|
120 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
121 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
122 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
123 |
+
if self.number_layers >= 4:
|
124 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
125 |
+
|
126 |
+
if self.number_layers == 3:
|
127 |
+
path_3 = self.scratch.refinenet3(layer_3_rn, size=layer_2_rn.shape[2:])
|
128 |
+
else:
|
129 |
+
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
|
130 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
|
131 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
|
132 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
133 |
+
|
134 |
+
if self.scratch.stem_transpose is not None:
|
135 |
+
path_1 = self.scratch.stem_transpose(path_1)
|
136 |
+
|
137 |
+
out = self.scratch.output_conv(path_1)
|
138 |
+
|
139 |
+
return out
|
140 |
+
|
141 |
+
|
142 |
+
class DPTDepthModel(DPT):
|
143 |
+
def __init__(self, path=None, non_negative=True, **kwargs):
|
144 |
+
features = kwargs["features"] if "features" in kwargs else 256
|
145 |
+
head_features_1 = kwargs["head_features_1"] if "head_features_1" in kwargs else features
|
146 |
+
head_features_2 = kwargs["head_features_2"] if "head_features_2" in kwargs else 32
|
147 |
+
kwargs.pop("head_features_1", None)
|
148 |
+
kwargs.pop("head_features_2", None)
|
149 |
+
|
150 |
+
head = nn.Sequential(
|
151 |
+
nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1),
|
152 |
+
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
153 |
+
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
|
154 |
+
nn.ReLU(True),
|
155 |
+
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
|
156 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
157 |
+
nn.Identity(),
|
158 |
+
)
|
159 |
+
|
160 |
+
super().__init__(head, **kwargs)
|
161 |
+
|
162 |
+
if path is not None:
|
163 |
+
self.load(path)
|
164 |
+
|
165 |
+
def forward(self, x):
|
166 |
+
return super().forward(x).squeeze(dim=1)
|
midas/midas_net.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
+
This file contains code that is adapted from
|
3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .base_model import BaseModel
|
9 |
+
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
|
10 |
+
|
11 |
+
|
12 |
+
class MidasNet(BaseModel):
|
13 |
+
"""Network for monocular depth estimation.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, path=None, features=256, non_negative=True):
|
17 |
+
"""Init.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
path (str, optional): Path to saved model. Defaults to None.
|
21 |
+
features (int, optional): Number of features. Defaults to 256.
|
22 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
23 |
+
"""
|
24 |
+
print("Loading weights: ", path)
|
25 |
+
|
26 |
+
super(MidasNet, self).__init__()
|
27 |
+
|
28 |
+
use_pretrained = False if path is None else True
|
29 |
+
|
30 |
+
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
|
31 |
+
|
32 |
+
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
33 |
+
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
34 |
+
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
35 |
+
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
36 |
+
|
37 |
+
self.scratch.output_conv = nn.Sequential(
|
38 |
+
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
39 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
40 |
+
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
|
41 |
+
nn.ReLU(True),
|
42 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
43 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
44 |
+
)
|
45 |
+
|
46 |
+
if path:
|
47 |
+
self.load(path)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
"""Forward pass.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
x (tensor): input data (image)
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
tensor: depth
|
57 |
+
"""
|
58 |
+
|
59 |
+
layer_1 = self.pretrained.layer1(x)
|
60 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
61 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
62 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
63 |
+
|
64 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
65 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
66 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
67 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
68 |
+
|
69 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
70 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
71 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
72 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
73 |
+
|
74 |
+
out = self.scratch.output_conv(path_1)
|
75 |
+
|
76 |
+
return torch.squeeze(out, dim=1)
|
midas/midas_net_custom.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
+
This file contains code that is adapted from
|
3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .base_model import BaseModel
|
9 |
+
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
|
10 |
+
|
11 |
+
|
12 |
+
class MidasNet_small(BaseModel):
|
13 |
+
"""Network for monocular depth estimation.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
|
17 |
+
blocks={'expand': True}):
|
18 |
+
"""Init.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
path (str, optional): Path to saved model. Defaults to None.
|
22 |
+
features (int, optional): Number of features. Defaults to 256.
|
23 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
24 |
+
"""
|
25 |
+
print("Loading weights: ", path)
|
26 |
+
|
27 |
+
super(MidasNet_small, self).__init__()
|
28 |
+
|
29 |
+
use_pretrained = False if path else True
|
30 |
+
|
31 |
+
self.channels_last = channels_last
|
32 |
+
self.blocks = blocks
|
33 |
+
self.backbone = backbone
|
34 |
+
|
35 |
+
self.groups = 1
|
36 |
+
|
37 |
+
features1=features
|
38 |
+
features2=features
|
39 |
+
features3=features
|
40 |
+
features4=features
|
41 |
+
self.expand = False
|
42 |
+
if "expand" in self.blocks and self.blocks['expand'] == True:
|
43 |
+
self.expand = True
|
44 |
+
features1=features
|
45 |
+
features2=features*2
|
46 |
+
features3=features*4
|
47 |
+
features4=features*8
|
48 |
+
|
49 |
+
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
|
50 |
+
|
51 |
+
self.scratch.activation = nn.ReLU(False)
|
52 |
+
|
53 |
+
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
54 |
+
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
55 |
+
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
56 |
+
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
|
57 |
+
|
58 |
+
|
59 |
+
self.scratch.output_conv = nn.Sequential(
|
60 |
+
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
|
61 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
62 |
+
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
|
63 |
+
self.scratch.activation,
|
64 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
65 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
66 |
+
nn.Identity(),
|
67 |
+
)
|
68 |
+
|
69 |
+
if path:
|
70 |
+
self.load(path)
|
71 |
+
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
"""Forward pass.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
x (tensor): input data (image)
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
tensor: depth
|
81 |
+
"""
|
82 |
+
if self.channels_last==True:
|
83 |
+
print("self.channels_last = ", self.channels_last)
|
84 |
+
x.contiguous(memory_format=torch.channels_last)
|
85 |
+
|
86 |
+
|
87 |
+
layer_1 = self.pretrained.layer1(x)
|
88 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
89 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
90 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
91 |
+
|
92 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
93 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
94 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
95 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
96 |
+
|
97 |
+
|
98 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
99 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
100 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
101 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
102 |
+
|
103 |
+
out = self.scratch.output_conv(path_1)
|
104 |
+
|
105 |
+
return torch.squeeze(out, dim=1)
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
def fuse_model(m):
|
110 |
+
prev_previous_type = nn.Identity()
|
111 |
+
prev_previous_name = ''
|
112 |
+
previous_type = nn.Identity()
|
113 |
+
previous_name = ''
|
114 |
+
for name, module in m.named_modules():
|
115 |
+
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
|
116 |
+
# print("FUSED ", prev_previous_name, previous_name, name)
|
117 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
|
118 |
+
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
|
119 |
+
# print("FUSED ", prev_previous_name, previous_name)
|
120 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
|
121 |
+
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
|
122 |
+
# print("FUSED ", previous_name, name)
|
123 |
+
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
|
124 |
+
|
125 |
+
prev_previous_type = previous_type
|
126 |
+
prev_previous_name = previous_name
|
127 |
+
previous_type = type(module)
|
128 |
+
previous_name = name
|
midas/model_loader.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from midas.dpt_depth import DPTDepthModel
|
5 |
+
from midas.midas_net import MidasNet
|
6 |
+
from midas.midas_net_custom import MidasNet_small
|
7 |
+
from midas.transforms import Resize, NormalizeImage, PrepareForNet
|
8 |
+
|
9 |
+
from torchvision.transforms import Compose
|
10 |
+
|
11 |
+
default_models = {
|
12 |
+
"dpt_beit_large_512": "weights/dpt_beit_large_512.pt",
|
13 |
+
"dpt_beit_large_384": "weights/dpt_beit_large_384.pt",
|
14 |
+
"dpt_beit_base_384": "weights/dpt_beit_base_384.pt",
|
15 |
+
"dpt_swin2_large_384": "weights/dpt_swin2_large_384.pt",
|
16 |
+
"dpt_swin2_base_384": "weights/dpt_swin2_base_384.pt",
|
17 |
+
"dpt_swin2_tiny_256": "weights/dpt_swin2_tiny_256.pt",
|
18 |
+
"dpt_swin_large_384": "weights/dpt_swin_large_384.pt",
|
19 |
+
"dpt_next_vit_large_384": "weights/dpt_next_vit_large_384.pt",
|
20 |
+
"dpt_levit_224": "weights/dpt_levit_224.pt",
|
21 |
+
"dpt_large_384": "weights/dpt_large_384.pt",
|
22 |
+
"dpt_hybrid_384": "weights/dpt_hybrid_384.pt",
|
23 |
+
"midas_v21_384": "weights/midas_v21_384.pt",
|
24 |
+
"midas_v21_small_256": "weights/midas_v21_small_256.pt",
|
25 |
+
"openvino_midas_v21_small_256": "weights/openvino_midas_v21_small_256.xml",
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
def load_model(device, model_path, model_type="dpt_large_384", optimize=True, height=None, square=False):
|
30 |
+
"""Load the specified network.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
device (device): the torch device used
|
34 |
+
model_path (str): path to saved model
|
35 |
+
model_type (str): the type of the model to be loaded
|
36 |
+
optimize (bool): optimize the model to half-integer on CUDA?
|
37 |
+
height (int): inference encoder image height
|
38 |
+
square (bool): resize to a square resolution?
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
The loaded network, the transform which prepares images as input to the network and the dimensions of the
|
42 |
+
network input
|
43 |
+
"""
|
44 |
+
if "openvino" in model_type:
|
45 |
+
from openvino.runtime import Core
|
46 |
+
|
47 |
+
keep_aspect_ratio = not square
|
48 |
+
|
49 |
+
if model_type == "dpt_beit_large_512":
|
50 |
+
model = DPTDepthModel(
|
51 |
+
path=model_path,
|
52 |
+
backbone="beitl16_512",
|
53 |
+
non_negative=True,
|
54 |
+
)
|
55 |
+
net_w, net_h = 512, 512
|
56 |
+
resize_mode = "minimal"
|
57 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
58 |
+
|
59 |
+
elif model_type == "dpt_beit_large_384":
|
60 |
+
model = DPTDepthModel(
|
61 |
+
path=model_path,
|
62 |
+
backbone="beitl16_384",
|
63 |
+
non_negative=True,
|
64 |
+
)
|
65 |
+
net_w, net_h = 384, 384
|
66 |
+
resize_mode = "minimal"
|
67 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
68 |
+
|
69 |
+
elif model_type == "dpt_beit_base_384":
|
70 |
+
model = DPTDepthModel(
|
71 |
+
path=model_path,
|
72 |
+
backbone="beitb16_384",
|
73 |
+
non_negative=True,
|
74 |
+
)
|
75 |
+
net_w, net_h = 384, 384
|
76 |
+
resize_mode = "minimal"
|
77 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
78 |
+
|
79 |
+
elif model_type == "dpt_swin2_large_384":
|
80 |
+
model = DPTDepthModel(
|
81 |
+
path=model_path,
|
82 |
+
backbone="swin2l24_384",
|
83 |
+
non_negative=True,
|
84 |
+
)
|
85 |
+
net_w, net_h = 384, 384
|
86 |
+
keep_aspect_ratio = False
|
87 |
+
resize_mode = "minimal"
|
88 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
89 |
+
|
90 |
+
elif model_type == "dpt_swin2_base_384":
|
91 |
+
model = DPTDepthModel(
|
92 |
+
path=model_path,
|
93 |
+
backbone="swin2b24_384",
|
94 |
+
non_negative=True,
|
95 |
+
)
|
96 |
+
net_w, net_h = 384, 384
|
97 |
+
keep_aspect_ratio = False
|
98 |
+
resize_mode = "minimal"
|
99 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
100 |
+
|
101 |
+
elif model_type == "dpt_swin2_tiny_256":
|
102 |
+
model = DPTDepthModel(
|
103 |
+
path=model_path,
|
104 |
+
backbone="swin2t16_256",
|
105 |
+
non_negative=True,
|
106 |
+
)
|
107 |
+
net_w, net_h = 256, 256
|
108 |
+
keep_aspect_ratio = False
|
109 |
+
resize_mode = "minimal"
|
110 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
111 |
+
|
112 |
+
elif model_type == "dpt_swin_large_384":
|
113 |
+
model = DPTDepthModel(
|
114 |
+
path=model_path,
|
115 |
+
backbone="swinl12_384",
|
116 |
+
non_negative=True,
|
117 |
+
)
|
118 |
+
net_w, net_h = 384, 384
|
119 |
+
keep_aspect_ratio = False
|
120 |
+
resize_mode = "minimal"
|
121 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
122 |
+
|
123 |
+
elif model_type == "dpt_next_vit_large_384":
|
124 |
+
model = DPTDepthModel(
|
125 |
+
path=model_path,
|
126 |
+
backbone="next_vit_large_6m",
|
127 |
+
non_negative=True,
|
128 |
+
)
|
129 |
+
net_w, net_h = 384, 384
|
130 |
+
resize_mode = "minimal"
|
131 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
132 |
+
|
133 |
+
# We change the notation from dpt_levit_224 (MiDaS notation) to levit_384 (timm notation) here, where the 224 refers
|
134 |
+
# to the resolution 224x224 used by LeViT and 384 is the first entry of the embed_dim, see _cfg and model_cfgs of
|
135 |
+
# https://github.com/rwightman/pytorch-image-models/blob/main/timm/models/levit.py
|
136 |
+
# (commit id: 927f031293a30afb940fff0bee34b85d9c059b0e)
|
137 |
+
elif model_type == "dpt_levit_224":
|
138 |
+
model = DPTDepthModel(
|
139 |
+
path=model_path,
|
140 |
+
backbone="levit_384",
|
141 |
+
non_negative=True,
|
142 |
+
head_features_1=64,
|
143 |
+
head_features_2=8,
|
144 |
+
)
|
145 |
+
net_w, net_h = 224, 224
|
146 |
+
keep_aspect_ratio = False
|
147 |
+
resize_mode = "minimal"
|
148 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
149 |
+
|
150 |
+
elif model_type == "dpt_large_384":
|
151 |
+
model = DPTDepthModel(
|
152 |
+
path=model_path,
|
153 |
+
backbone="vitl16_384",
|
154 |
+
non_negative=True,
|
155 |
+
)
|
156 |
+
net_w, net_h = 384, 384
|
157 |
+
resize_mode = "minimal"
|
158 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
159 |
+
|
160 |
+
elif model_type == "dpt_hybrid_384":
|
161 |
+
model = DPTDepthModel(
|
162 |
+
path=model_path,
|
163 |
+
backbone="vitb_rn50_384",
|
164 |
+
non_negative=True,
|
165 |
+
)
|
166 |
+
net_w, net_h = 384, 384
|
167 |
+
resize_mode = "minimal"
|
168 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
169 |
+
|
170 |
+
elif model_type == "midas_v21_384":
|
171 |
+
model = MidasNet(model_path, non_negative=True)
|
172 |
+
net_w, net_h = 384, 384
|
173 |
+
resize_mode = "upper_bound"
|
174 |
+
normalization = NormalizeImage(
|
175 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
176 |
+
)
|
177 |
+
|
178 |
+
elif model_type == "midas_v21_small_256":
|
179 |
+
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
180 |
+
non_negative=True, blocks={'expand': True})
|
181 |
+
net_w, net_h = 256, 256
|
182 |
+
resize_mode = "upper_bound"
|
183 |
+
normalization = NormalizeImage(
|
184 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
185 |
+
)
|
186 |
+
|
187 |
+
elif model_type == "openvino_midas_v21_small_256":
|
188 |
+
ie = Core()
|
189 |
+
uncompiled_model = ie.read_model(model=model_path)
|
190 |
+
model = ie.compile_model(uncompiled_model, "CPU")
|
191 |
+
net_w, net_h = 256, 256
|
192 |
+
resize_mode = "upper_bound"
|
193 |
+
normalization = NormalizeImage(
|
194 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
195 |
+
)
|
196 |
+
|
197 |
+
else:
|
198 |
+
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
199 |
+
assert False
|
200 |
+
|
201 |
+
if not "openvino" in model_type:
|
202 |
+
print("Model loaded, number of parameters = {:.0f}M".format(sum(p.numel() for p in model.parameters()) / 1e6))
|
203 |
+
else:
|
204 |
+
print("Model loaded, optimized with OpenVINO")
|
205 |
+
|
206 |
+
if "openvino" in model_type:
|
207 |
+
keep_aspect_ratio = False
|
208 |
+
|
209 |
+
if height is not None:
|
210 |
+
net_w, net_h = height, height
|
211 |
+
|
212 |
+
transform = Compose(
|
213 |
+
[
|
214 |
+
Resize(
|
215 |
+
net_w,
|
216 |
+
net_h,
|
217 |
+
resize_target=None,
|
218 |
+
keep_aspect_ratio=keep_aspect_ratio,
|
219 |
+
ensure_multiple_of=32,
|
220 |
+
resize_method=resize_mode,
|
221 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
222 |
+
),
|
223 |
+
normalization,
|
224 |
+
PrepareForNet(),
|
225 |
+
]
|
226 |
+
)
|
227 |
+
|
228 |
+
if not "openvino" in model_type:
|
229 |
+
model.eval()
|
230 |
+
|
231 |
+
if optimize and (device == torch.device("cuda")):
|
232 |
+
if not "openvino" in model_type:
|
233 |
+
model = model.to(memory_format=torch.channels_last)
|
234 |
+
model = model.half()
|
235 |
+
else:
|
236 |
+
print("Error: OpenVINO models are already optimized. No optimization to half-float possible.")
|
237 |
+
exit()
|
238 |
+
|
239 |
+
if not "openvino" in model_type:
|
240 |
+
model.to(device)
|
241 |
+
|
242 |
+
return model, transform, net_w, net_h
|
midas/transforms.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import math
|
4 |
+
|
5 |
+
|
6 |
+
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
7 |
+
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
sample (dict): sample
|
11 |
+
size (tuple): image size
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
tuple: new size
|
15 |
+
"""
|
16 |
+
shape = list(sample["disparity"].shape)
|
17 |
+
|
18 |
+
if shape[0] >= size[0] and shape[1] >= size[1]:
|
19 |
+
return sample
|
20 |
+
|
21 |
+
scale = [0, 0]
|
22 |
+
scale[0] = size[0] / shape[0]
|
23 |
+
scale[1] = size[1] / shape[1]
|
24 |
+
|
25 |
+
scale = max(scale)
|
26 |
+
|
27 |
+
shape[0] = math.ceil(scale * shape[0])
|
28 |
+
shape[1] = math.ceil(scale * shape[1])
|
29 |
+
|
30 |
+
# resize
|
31 |
+
sample["image"] = cv2.resize(
|
32 |
+
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
33 |
+
)
|
34 |
+
|
35 |
+
sample["disparity"] = cv2.resize(
|
36 |
+
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
37 |
+
)
|
38 |
+
sample["mask"] = cv2.resize(
|
39 |
+
sample["mask"].astype(np.float32),
|
40 |
+
tuple(shape[::-1]),
|
41 |
+
interpolation=cv2.INTER_NEAREST,
|
42 |
+
)
|
43 |
+
sample["mask"] = sample["mask"].astype(bool)
|
44 |
+
|
45 |
+
return tuple(shape)
|
46 |
+
|
47 |
+
|
48 |
+
class Resize(object):
|
49 |
+
"""Resize sample to given size (width, height).
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
width,
|
55 |
+
height,
|
56 |
+
resize_target=True,
|
57 |
+
keep_aspect_ratio=False,
|
58 |
+
ensure_multiple_of=1,
|
59 |
+
resize_method="lower_bound",
|
60 |
+
image_interpolation_method=cv2.INTER_AREA,
|
61 |
+
):
|
62 |
+
"""Init.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
width (int): desired output width
|
66 |
+
height (int): desired output height
|
67 |
+
resize_target (bool, optional):
|
68 |
+
True: Resize the full sample (image, mask, target).
|
69 |
+
False: Resize image only.
|
70 |
+
Defaults to True.
|
71 |
+
keep_aspect_ratio (bool, optional):
|
72 |
+
True: Keep the aspect ratio of the input sample.
|
73 |
+
Output sample might not have the given width and height, and
|
74 |
+
resize behaviour depends on the parameter 'resize_method'.
|
75 |
+
Defaults to False.
|
76 |
+
ensure_multiple_of (int, optional):
|
77 |
+
Output width and height is constrained to be multiple of this parameter.
|
78 |
+
Defaults to 1.
|
79 |
+
resize_method (str, optional):
|
80 |
+
"lower_bound": Output will be at least as large as the given size.
|
81 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
82 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
83 |
+
Defaults to "lower_bound".
|
84 |
+
"""
|
85 |
+
self.__width = width
|
86 |
+
self.__height = height
|
87 |
+
|
88 |
+
self.__resize_target = resize_target
|
89 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
90 |
+
self.__multiple_of = ensure_multiple_of
|
91 |
+
self.__resize_method = resize_method
|
92 |
+
self.__image_interpolation_method = image_interpolation_method
|
93 |
+
|
94 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
95 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
96 |
+
|
97 |
+
if max_val is not None and y > max_val:
|
98 |
+
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
99 |
+
|
100 |
+
if y < min_val:
|
101 |
+
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
102 |
+
|
103 |
+
return y
|
104 |
+
|
105 |
+
def get_size(self, width, height):
|
106 |
+
# determine new height and width
|
107 |
+
scale_height = self.__height / height
|
108 |
+
scale_width = self.__width / width
|
109 |
+
|
110 |
+
if self.__keep_aspect_ratio:
|
111 |
+
if self.__resize_method == "lower_bound":
|
112 |
+
# scale such that output size is lower bound
|
113 |
+
if scale_width > scale_height:
|
114 |
+
# fit width
|
115 |
+
scale_height = scale_width
|
116 |
+
else:
|
117 |
+
# fit height
|
118 |
+
scale_width = scale_height
|
119 |
+
elif self.__resize_method == "upper_bound":
|
120 |
+
# scale such that output size is upper bound
|
121 |
+
if scale_width < scale_height:
|
122 |
+
# fit width
|
123 |
+
scale_height = scale_width
|
124 |
+
else:
|
125 |
+
# fit height
|
126 |
+
scale_width = scale_height
|
127 |
+
elif self.__resize_method == "minimal":
|
128 |
+
# scale as least as possbile
|
129 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
130 |
+
# fit width
|
131 |
+
scale_height = scale_width
|
132 |
+
else:
|
133 |
+
# fit height
|
134 |
+
scale_width = scale_height
|
135 |
+
else:
|
136 |
+
raise ValueError(
|
137 |
+
f"resize_method {self.__resize_method} not implemented"
|
138 |
+
)
|
139 |
+
|
140 |
+
if self.__resize_method == "lower_bound":
|
141 |
+
new_height = self.constrain_to_multiple_of(
|
142 |
+
scale_height * height, min_val=self.__height
|
143 |
+
)
|
144 |
+
new_width = self.constrain_to_multiple_of(
|
145 |
+
scale_width * width, min_val=self.__width
|
146 |
+
)
|
147 |
+
elif self.__resize_method == "upper_bound":
|
148 |
+
new_height = self.constrain_to_multiple_of(
|
149 |
+
scale_height * height, max_val=self.__height
|
150 |
+
)
|
151 |
+
new_width = self.constrain_to_multiple_of(
|
152 |
+
scale_width * width, max_val=self.__width
|
153 |
+
)
|
154 |
+
elif self.__resize_method == "minimal":
|
155 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
156 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
157 |
+
else:
|
158 |
+
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
159 |
+
|
160 |
+
return (new_width, new_height)
|
161 |
+
|
162 |
+
def __call__(self, sample):
|
163 |
+
width, height = self.get_size(
|
164 |
+
sample["image"].shape[1], sample["image"].shape[0]
|
165 |
+
)
|
166 |
+
|
167 |
+
# resize sample
|
168 |
+
sample["image"] = cv2.resize(
|
169 |
+
sample["image"],
|
170 |
+
(width, height),
|
171 |
+
interpolation=self.__image_interpolation_method,
|
172 |
+
)
|
173 |
+
|
174 |
+
if self.__resize_target:
|
175 |
+
if "disparity" in sample:
|
176 |
+
sample["disparity"] = cv2.resize(
|
177 |
+
sample["disparity"],
|
178 |
+
(width, height),
|
179 |
+
interpolation=cv2.INTER_NEAREST,
|
180 |
+
)
|
181 |
+
|
182 |
+
if "depth" in sample:
|
183 |
+
sample["depth"] = cv2.resize(
|
184 |
+
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
185 |
+
)
|
186 |
+
|
187 |
+
sample["mask"] = cv2.resize(
|
188 |
+
sample["mask"].astype(np.float32),
|
189 |
+
(width, height),
|
190 |
+
interpolation=cv2.INTER_NEAREST,
|
191 |
+
)
|
192 |
+
sample["mask"] = sample["mask"].astype(bool)
|
193 |
+
|
194 |
+
return sample
|
195 |
+
|
196 |
+
|
197 |
+
class NormalizeImage(object):
|
198 |
+
"""Normlize image by given mean and std.
|
199 |
+
"""
|
200 |
+
|
201 |
+
def __init__(self, mean, std):
|
202 |
+
self.__mean = mean
|
203 |
+
self.__std = std
|
204 |
+
|
205 |
+
def __call__(self, sample):
|
206 |
+
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
207 |
+
|
208 |
+
return sample
|
209 |
+
|
210 |
+
|
211 |
+
class PrepareForNet(object):
|
212 |
+
"""Prepare sample for usage as network input.
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self):
|
216 |
+
pass
|
217 |
+
|
218 |
+
def __call__(self, sample):
|
219 |
+
image = np.transpose(sample["image"], (2, 0, 1))
|
220 |
+
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
221 |
+
|
222 |
+
if "mask" in sample:
|
223 |
+
sample["mask"] = sample["mask"].astype(np.float32)
|
224 |
+
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
225 |
+
|
226 |
+
if "disparity" in sample:
|
227 |
+
disparity = sample["disparity"].astype(np.float32)
|
228 |
+
sample["disparity"] = np.ascontiguousarray(disparity)
|
229 |
+
|
230 |
+
if "depth" in sample:
|
231 |
+
depth = sample["depth"].astype(np.float32)
|
232 |
+
sample["depth"] = np.ascontiguousarray(depth)
|
233 |
+
|
234 |
+
return sample
|