File size: 2,073 Bytes
735d745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
!pip install -q langchain
!pip install -q torch
!pip install -q transformers
!pip install -q sentence-transformers
!pip install -q datasets
!pip install -q faiss-cpu

from langchain.document_loaders import HuggingFaceDatasetLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from transformers import AutoTokenizer, pipeline
from langchain import HuggingFacePipeline
from langchain.chains import RetrievalQA

# Specify the dataset name and the column containing the content
dataset_name = "databricks/databricks-dolly-15k"
page_content_column = "context"  # or any other column you're interested in

# Create a loader instance
loader = HuggingFaceDatasetLoader(dataset_name, page_content_column)

# Load the data
data = loader.load()

# Display the first 15 entries
data[:2]



# Create an instance of the RecursiveCharacterTextSplitter class with specific parameters.
# It splits text into chunks of 1000 characters each with a 150-character overlap.
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)

# 'data' holds the text you want to split, split the text into documents using the text splitter.
docs = text_splitter.split_documents(data)


# Define the path to the pre-trained model you want to use
modelPath = "sentence-transformers/all-MiniLM-l6-v2"

# Create a dictionary with model configuration options, specifying to use the CPU for computations
model_kwargs = {'device':'cpu'}

# Create a dictionary with encoding options, specifically setting 'normalize_embeddings' to False
encode_kwargs = {'normalize_embeddings': False}

# Initialize an instance of HuggingFaceEmbeddings with the specified parameters
embeddings = HuggingFaceEmbeddings(
    model_name=modelPath,     # Provide the pre-trained model's path
    model_kwargs=model_kwargs, # Pass the model configuration options
    encode_kwargs=encode_kwargs # Pass the encoding options