Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install -q langchain
|
2 |
+
!pip install -q torch
|
3 |
+
!pip install -q transformers
|
4 |
+
!pip install -q sentence-transformers
|
5 |
+
!pip install -q datasets
|
6 |
+
!pip install -q faiss-cpu
|
7 |
+
|
8 |
+
from langchain.document_loaders import HuggingFaceDatasetLoader
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
+
from langchain.vectorstores import FAISS
|
12 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
13 |
+
from transformers import AutoTokenizer, pipeline
|
14 |
+
from langchain import HuggingFacePipeline
|
15 |
+
from langchain.chains import RetrievalQA
|
16 |
+
|
17 |
+
# Specify the dataset name and the column containing the content
|
18 |
+
dataset_name = "databricks/databricks-dolly-15k"
|
19 |
+
page_content_column = "context" # or any other column you're interested in
|
20 |
+
|
21 |
+
# Create a loader instance
|
22 |
+
loader = HuggingFaceDatasetLoader(dataset_name, page_content_column)
|
23 |
+
|
24 |
+
# Load the data
|
25 |
+
data = loader.load()
|
26 |
+
|
27 |
+
# Display the first 15 entries
|
28 |
+
data[:2]
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
# Create an instance of the RecursiveCharacterTextSplitter class with specific parameters.
|
33 |
+
# It splits text into chunks of 1000 characters each with a 150-character overlap.
|
34 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
|
35 |
+
|
36 |
+
# 'data' holds the text you want to split, split the text into documents using the text splitter.
|
37 |
+
docs = text_splitter.split_documents(data)
|
38 |
+
|
39 |
+
|
40 |
+
# Define the path to the pre-trained model you want to use
|
41 |
+
modelPath = "sentence-transformers/all-MiniLM-l6-v2"
|
42 |
+
|
43 |
+
# Create a dictionary with model configuration options, specifying to use the CPU for computations
|
44 |
+
model_kwargs = {'device':'cpu'}
|
45 |
+
|
46 |
+
# Create a dictionary with encoding options, specifically setting 'normalize_embeddings' to False
|
47 |
+
encode_kwargs = {'normalize_embeddings': False}
|
48 |
+
|
49 |
+
# Initialize an instance of HuggingFaceEmbeddings with the specified parameters
|
50 |
+
embeddings = HuggingFaceEmbeddings(
|
51 |
+
model_name=modelPath, # Provide the pre-trained model's path
|
52 |
+
model_kwargs=model_kwargs, # Pass the model configuration options
|
53 |
+
encode_kwargs=encode_kwargs # Pass the encoding options
|