Spaces:
Runtime error
Runtime error
File size: 2,041 Bytes
397ed79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import os
import gradio as gr
import numpy as np
import pandas as pd
import pickle
import transformers
from transformers import AutoTokenizer, AutoConfig,AutoModelForSequenceClassification,TFAutoModelForSequenceClassification, pipeline
from scipy.special import softmax
from dotenv import load_dotenv, dotenv_values
# from huggingface_hub import login
from huggingface_hub import login
# notebook_login()
load_dotenv()
login(os.getenv("access_token"))
# Requirements
model_path = "imalexianne/distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_path, revision="main")
config = AutoConfig.from_pretrained(model_path, revision="main")
model = AutoModelForSequenceClassification.from_pretrained(model_path, revision="main")
# Preprocess text (username and link placeholders)
def preprocess(text):
new_text = []
for x in text.split(" "):
x = "@user" if x.startswith("@") and len(x) > 1 else x
x = "http" if x.startswith("http") else x
new_text.append(x)
return " ".join(new_text)
# ---- Function to process the input and return prediction
def sentiment_analysis(text):
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors = "pt") # for PyTorch-based models
output = model(**encoded_input)
scores_ = output[0][0].detach().numpy()
scores_ = softmax(scores_)
# Format output dict of scores
labels = ["Negative", "Neutral", "Positive"]
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
return scores
# ---- Gradio app interface
app = gr.Interface(fn = sentiment_analysis,
inputs = gr.Textbox("Write here"),
outputs = "label",
title = "Sentiment Analysis of Tweets on COVID-19 Vaccines",
description = "Sentiment Analysis of text based on tweets about COVID-19 Vaccines using a fine-tuned 'distilbert-base-uncased' model",
examples = [["Covid vaccination has no positive impact"]]
)
app.launch(share=True) |