Spaces:
Runtime error
Runtime error
imalexianne
commited on
Commit
•
397ed79
1
Parent(s):
3e68d2f
Add application file
Browse files- .gitignore +2 -0
- app.py +59 -0
- requirements.txt +0 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
*venv/
|
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import pickle
|
6 |
+
import transformers
|
7 |
+
from transformers import AutoTokenizer, AutoConfig,AutoModelForSequenceClassification,TFAutoModelForSequenceClassification, pipeline
|
8 |
+
from scipy.special import softmax
|
9 |
+
from dotenv import load_dotenv, dotenv_values
|
10 |
+
# from huggingface_hub import login
|
11 |
+
|
12 |
+
from huggingface_hub import login
|
13 |
+
|
14 |
+
# notebook_login()
|
15 |
+
load_dotenv()
|
16 |
+
login(os.getenv("access_token"))
|
17 |
+
# Requirements
|
18 |
+
model_path = "imalexianne/distilbert-base-uncased"
|
19 |
+
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, revision="main")
|
21 |
+
config = AutoConfig.from_pretrained(model_path, revision="main")
|
22 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path, revision="main")
|
23 |
+
|
24 |
+
# Preprocess text (username and link placeholders)
|
25 |
+
def preprocess(text):
|
26 |
+
new_text = []
|
27 |
+
for x in text.split(" "):
|
28 |
+
x = "@user" if x.startswith("@") and len(x) > 1 else x
|
29 |
+
x = "http" if x.startswith("http") else x
|
30 |
+
new_text.append(x)
|
31 |
+
return " ".join(new_text)
|
32 |
+
|
33 |
+
# ---- Function to process the input and return prediction
|
34 |
+
def sentiment_analysis(text):
|
35 |
+
text = preprocess(text)
|
36 |
+
|
37 |
+
encoded_input = tokenizer(text, return_tensors = "pt") # for PyTorch-based models
|
38 |
+
output = model(**encoded_input)
|
39 |
+
scores_ = output[0][0].detach().numpy()
|
40 |
+
scores_ = softmax(scores_)
|
41 |
+
|
42 |
+
# Format output dict of scores
|
43 |
+
labels = ["Negative", "Neutral", "Positive"]
|
44 |
+
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
45 |
+
|
46 |
+
return scores
|
47 |
+
|
48 |
+
|
49 |
+
# ---- Gradio app interface
|
50 |
+
app = gr.Interface(fn = sentiment_analysis,
|
51 |
+
inputs = gr.Textbox("Write here"),
|
52 |
+
outputs = "label",
|
53 |
+
title = "Sentiment Analysis of Tweets on COVID-19 Vaccines",
|
54 |
+
description = "Sentiment Analysis of text based on tweets about COVID-19 Vaccines using a fine-tuned 'distilbert-base-uncased' model",
|
55 |
+
|
56 |
+
examples = [["Covid vaccination has no positive impact"]]
|
57 |
+
)
|
58 |
+
|
59 |
+
app.launch(share=True)
|
requirements.txt
ADDED
File without changes
|