File size: 1,024 Bytes
5bab46e
3e4dd87
5bab46e
c80fe98
3e4dd87
c80fe98
5bab46e
 
 
 
 
3e4dd87
62a3c63
 
5bab46e
3c637d9
5bab46e
 
3e4dd87
3c637d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import gradio as gr
from fastai.vision.all import *
import skimage

learn = load_learner('export.pkl')

labels = learn.dls.vocab
def predict(img):
    img = PILImage.create(img)
    pred,pred_idx,probs = learn.predict(img)
    return {labels[i]: float(probs[i]) for i in range(len(labels))}

title = "Jal rakshak"
description = "A water issue specific ResNet 101 based classifier  trained on custom dataset. Created as a demo for Gradio and HuggingFace Spaces."
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
examples = ['flood.jpg', 'istockphoto-1331719299-2048x2048.jpg', 'istockphoto-157313406-2048x2048.jpg', 'istockphoto-876880612-2048x2048.jpg']
interpretation='default'
enable_queue=True

gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description, examples = examples, interpretation=interpretation,enable_queue=enable_queue).launch()