ignoreandfly commited on
Commit
5bab46e
1 Parent(s): 0171820

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -29
app.py CHANGED
@@ -1,35 +1,20 @@
1
- import streamlit as st
2
- import os
3
- from PIL import Image
4
- import time
5
  from fastai.vision.all import *
6
- from fastai.learner import load_learner
7
 
8
- def GetLabel(img):
9
- return img.split('-')[0]
10
-
11
-
12
- #Load the Learner (Exported from ipnyb file with learn.export() )
13
  learn = load_learner('export.pkl')
14
 
 
 
 
 
 
15
 
16
- #Classify image
17
- def classify_image(cl_img):
18
- img = Image.open(cl_img)
19
- st.image(img)
20
- pred, _ , _ = learn.predict(img)
21
- return pred
22
-
23
-
24
-
25
-
26
- st.set_page_config(page_title="PyTorch Food Classifier - FastAI 2022", page_icon=":robot:")
27
- st.header("PyTorch Food Classifier")
28
-
29
- file_up = st.file_uploader("Upload Your Food Image Below", type=["jpg","png"])
30
 
31
- if st.button('Run Model'):
32
- st.write("Button Pressed")
33
- cl_done = classify_image(file_up)
34
-
35
- st.write(f"Your food is: {cl_done}")
 
1
+ import gradio as gr
 
 
 
2
  from fastai.vision.all import *
3
+ import skimage
4
 
 
 
 
 
 
5
  learn = load_learner('export.pkl')
6
 
7
+ labels = learn.dls.vocab
8
+ def predict(img):
9
+ img = PILImage.create(img)
10
+ pred,pred_idx,probs = learn.predict(img)
11
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
12
 
13
+ title = "Pet Breed Classifier"
14
+ description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
15
+ article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
16
+ examples = ['siamese.jpg']
17
+ interpretation='default'
18
+ enable_queue=True
 
 
 
 
 
 
 
 
19
 
20
+ gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()