Spaces:
Sleeping
Sleeping
File size: 3,292 Bytes
ac117b5 71382c0 19dfa7a f98cc68 71382c0 19dfa7a 71382c0 f98cc68 19dfa7a f98cc68 19dfa7a f98cc68 19dfa7a 71382c0 19dfa7a f98cc68 19dfa7a 71382c0 f98cc68 71382c0 19dfa7a 71382c0 19dfa7a 71382c0 ac117b5 19dfa7a ac117b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import gradio as gr
from mammal_demo.demo_framework import MammalObjectBroker, MammalTask
from mammal_demo.dti_task import DtiTask
from mammal_demo.ppi_task import PpiTask
from mammal_demo.tcr_task import TcrTask
all_tasks: dict[str, MammalTask] = dict()
all_models: dict[str, MammalObjectBroker] = dict()
# first create the required tasks
# Note that the tasks need access to the models, as the model to use depends on the state of the widget
# we pass the all_models dict and update it when we actualy have the models.
ppi_task = PpiTask(model_dict=all_models)
all_tasks[ppi_task.name] = ppi_task
tdi_task = DtiTask(model_dict=all_models)
all_tasks[tdi_task.name] = tdi_task
tcr_task = TcrTask(model_dict=all_models)
all_tasks[tcr_task.name] = tcr_task
# create the model holders. hold the model and the tokenizer, lazy download
# note that the list of relevent tasks needs to be stated.
ppi_model = MammalObjectBroker(
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m", task_list=[ppi_task.name,tcr_task.name]
)
all_models[ppi_model.name] = ppi_model
tdi_model = MammalObjectBroker(
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd",
task_list=[tdi_task.name],
)
all_models[tdi_model.name] = tdi_model
tcr_model = MammalObjectBroker(
model_path= "ibm/biomed.omics.bl.sm.ma-ted-458m.tcr_epitope_bind",
task_list=[tcr_task.name]
)
all_models[tcr_model.name] = tcr_model
def create_application():
def task_change(value):
visibility = [gr.update(visible=(task == value)) for task in all_tasks.keys()]
choices = [
model_name
for model_name, model in all_models.items()
if value in model.tasks
]
if choices:
return (gr.update(choices=choices, value=choices[0], visible=True), *visibility)
else:
return (gr.skip, *visibility)
# return model_name_dropdown
with gr.Blocks() as application:
task_dropdown = gr.Dropdown(choices=["select demo"] + list(all_tasks.keys()), label="Mammal Task")
task_dropdown.interactive = True
model_name_dropdown = gr.Dropdown(
choices=[
model_name
for model_name, model in all_models.items()
if task_dropdown.value in model.tasks
],
interactive=True,
label="Matching Mammal models",
visible=False,
)
task_dropdown.change(
task_change,
inputs=[task_dropdown],
outputs=[model_name_dropdown]
+ [all_tasks[task].demo(model_name_widgit=model_name_dropdown) for task in all_tasks],
)
# def set_demo_vis(main_text):
# main_text=main_text
# print(f"main text is {main_text}")
# return gr.Group(visible=True)
# #return gr.Group(visible=(main_text == "PPI"))
# # , gr.Group( visible=(main_text == "DTI") )
# task_dropdown.change(
# set_ppi_vis, inputs=task_dropdown, outputs=[ppi_demo]
# )
return application
full_demo = None
def main():
global full_demo
full_demo = create_application()
full_demo.launch(show_error=True, share=False)
if __name__ == "__main__":
main()
|