File size: 12,079 Bytes
4c8737b
 
 
 
 
 
 
93d0d1a
4c8737b
 
 
 
 
 
022cccc
4c8737b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
022cccc
4c8737b
022cccc
4c8737b
022cccc
4c8737b
 
 
022cccc
4c8737b
 
022cccc
4c8737b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
022cccc
4c8737b
 
 
 
 
 
 
 
 
 
022cccc
 
 
 
 
4c8737b
 
 
 
 
022cccc
4c8737b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
022cccc
4c8737b
 
 
 
 
 
 
 
 
022cccc
4c8737b
 
 
 
 
 
022cccc
4c8737b
 
 
 
 
 
022cccc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72dbfd7
022cccc
 
 
 
 
72dbfd7
 
 
 
 
 
 
 
 
 
 
022cccc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72dbfd7
022cccc
 
 
72dbfd7
022cccc
 
 
 
 
 
 
 
4c8737b
022cccc
 
 
4c8737b
 
 
 
022cccc
 
4c8737b
 
022cccc
4c8737b
022cccc
4c8737b
 
 
022cccc
4c8737b
 
 
 
 
 
 
 
022cccc
 
 
 
 
 
 
 
 
 
 
 
4c8737b
 
022cccc
 
 
 
4c8737b
 
022cccc
4c8737b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import gradio as gr
import torch
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
from mammal.examples.dti_bindingdb_kd.task import DtiBindingdbKdTask
from mammal.keys import *
from mammal.model import Mammal

from demo_framework import MammalObjectBroker, MammalTask    

all_tasks = dict()
all_models= dict()

class PpiTask(MammalTask):
    def __init__(self):
        super().__init__(name="Protein-Protein Interaction")
        self.description = "Protein-Protein Interaction (PPI)"
        self.examples = {
            "protein_calmodulin": "MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMISELDQDGFIDKEDLHDGDGKISFEEFLNLVNKEMTADVDGDGQVNYEEFVTMMTSK",
            "protein_calcineurin": "MSSKLLLAGLDIERVLAEKNFYKEWDTWIIEAMNVGDEEVDRIKEFKEDEIFEEAKTLGTAEMQEYKKQKLEEAIEGAFDIFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIRQMWDQNGDWDRIKELKFGEIKKLSAKDTRGTIFIKVFENLGTGVDSEYEDVSKYMLKHQ",
        }
        self.markup_text = """
    # Mammal based {self.description} demonstration
    
    Given two protein sequences, estimate if the proteins interact or not."""
    
        
        
    @staticmethod
    def positive_token_id(model_holder: MammalObjectBroker):
        """token for positive binding

        Args:
            model (MammalTrainedModel): model holding tokenizer

        Returns:
            int: id of positive binding token
        """
        return model_holder.tokenizer_op.get_token_id("<1>")
    
    def generate_prompt(self, prot1, prot2):
        """Formatting prompt to match pre-training syntax

        Args:
            prot1 (str): sequance of protein number 1
            prot2 (str): sequance of protein number 2

        Returns:
            str: prompt
        """   
        prompt =  f"<@TOKENIZER-TYPE=AA><BINDING_AFFINITY_CLASS><SENTINEL_ID_0>"\
            "<MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN>"\
            "<SEQUENCE_NATURAL_START>{prot1}<SEQUENCE_NATURAL_END>"\
            "<MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN>"\
            "<SEQUENCE_NATURAL_START>{prot2}<SEQUENCE_NATURAL_END><EOS>"
        return prompt
    
    
    def crate_sample_dict(self,sample_inputs: dict, model_holder:MammalObjectBroker):
        # Create and load sample
        sample_dict = dict()
        prompt = self.generate_prompt(*sample_inputs)
        sample_dict[ENCODER_INPUTS_STR] = prompt

        # Tokenize
        sample_dict = model_holder.tokenizer_op(
            sample_dict=sample_dict,
            key_in=ENCODER_INPUTS_STR,
            key_out_tokens_ids=ENCODER_INPUTS_TOKENS,
            key_out_attention_mask=ENCODER_INPUTS_ATTENTION_MASK,
        )
        sample_dict[ENCODER_INPUTS_TOKENS] = torch.tensor(
            sample_dict[ENCODER_INPUTS_TOKENS]
        )
        sample_dict[ENCODER_INPUTS_ATTENTION_MASK] = torch.tensor(
            sample_dict[ENCODER_INPUTS_ATTENTION_MASK]
        )
        return sample_dict

    def run_model(self, sample_dict, model: Mammal):
        # Generate Prediction
        batch_dict = model.generate(
            [sample_dict],
            output_scores=True,
            return_dict_in_generate=True,
            max_new_tokens=5,
        )
        return batch_dict
        
    def decode_output(self,batch_dict, model_holder:MammalObjectBroker):

        # Get output
        generated_output = model_holder.tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0])
        score = batch_dict["model.out.scores"][0][1][self.positive_token_id(model_holder)].item()

        return generated_output, score


    def create_and_run_prompt(self,model_name,protein1, protein2):
        model_holder = all_models[model_name]
        sample_inputs = {"prot1":protein1, 
                  "prot2":protein2
                  }
        sample_dict = self.crate_sample_dict(sample_inputs=sample_inputs, model_holder=model_holder)
        prompt = sample_dict[ENCODER_INPUTS_STR]
        batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model)
        res = prompt, *self.decode_output(batch_dict,model_holder=model_holder)
        return res

    
    def create_demo(self,model_name_widget:gr.component):
        
    # """
    # ### Using the model from

    # ```{model} ```
    # """
        with gr.Group() as demo:
            gr.Markdown(self.markup_text)
            with gr.Row():
                prot1 = gr.Textbox(
                    label="Protein 1 sequence",
                    # info="standard",
                    interactive=True,
                    lines=3,
                    value=self.examples["protein_calmodulin"],
                )
                prot2 = gr.Textbox(
                    label="Protein 2 sequence",
                    # info="standard",
                    interactive=True,
                    lines=3,
                    value=self.examples["protein_calcineurin"],
                )
            with gr.Row():
                run_mammal: gr.Button = gr.Button(
                    "Run Mammal prompt for Protein-Protein Interaction", variant="primary"
                )
            with gr.Row():
                prompt_box = gr.Textbox(label="Mammal prompt", lines=5)

            with gr.Row():
                decoded = gr.Textbox(label="Mammal output")
                run_mammal.click(
                    fn=self.create_and_run_prompt,
                    inputs=[model_name_widget, prot1, prot2],
                    outputs=[prompt_box, decoded, gr.Number(label="PPI score")],
                )
            with gr.Row():
                gr.Markdown(
                    "```<SENTINEL_ID_0>``` contains the binding affinity class, which is ```<1>``` for interacting and ```<0>``` for non-interacting"
                )
            demo.visible = False
            return demo

ppi_task = PpiTask()
all_tasks[ppi_task.name]=ppi_task


class DtiTask(MammalTask):
    def __init__(self):
        super().__init__(name="Drug-Target Binding Affinity")
        self.description = "Drug-Target Binding Affinity (tdi)"
        self.examples = {
            "target_seq": "NLMKRCTRGFRKLGKCTTLEEEKCKTLYPRGQCTCSDSKMNTHSCDCKSC",
            "drug_seq":"CC(=O)NCCC1=CNc2c1cc(OC)cc2"
            }
        self.markup_text = """
# Mammal based Target-Drug binding affinity demonstration

Given a protein sequence and a drug (in SMILES), estimate the binding affinity.
"""
    
    def crate_sample_dict(self, sample_inputs:dict, model_holder:MammalObjectBroker):
        """convert sample_inputs to sample_dict including creating a proper prompt

        Args:
            sample_inputs (dict): dictionary containing the inputs to the model
            model_holder (MammalObjectBroker): model holder
        Returns:
           dict: sample_dict for feeding into model
        """
        sample_dict = dict(sample_inputs)
        sample_dict = DtiBindingdbKdTask.data_preprocessing(
            sample_dict=sample_dict,
            tokenizer_op=model_holder.tokenizer_op,
            target_sequence_key="target_seq",
            drug_sequence_key="drug_seq",
            norm_y_mean=None,
            norm_y_std=None,
            device=model_holder.model.device,
        )
        return sample_dict
        

    def run_model(self, sample_dict, model: Mammal):
        # Generate Prediction
        batch_dict = model.forward_encoder_only([sample_dict])
        return batch_dict
        
    def decode_output(self,batch_dict, model_holder):

        # Get output
        batch_dict = DtiBindingdbKdTask.process_model_output(
            batch_dict,
            scalars_preds_processed_key="model.out.dti_bindingdb_kd",
            norm_y_mean=5.79384684128215,
            norm_y_std=1.33808027428196,
            )
        ans = (
        "model.out.dti_bindingdb_kd",
        float(batch_dict["model.out.dti_bindingdb_kd"][0]),
        ) 
        return ans


    def create_and_run_prompt(self,model_name,target_seq, drug_seq):
        model_holder = all_models[model_name]
        inputs = {
            "target_seq": target_seq,
            "drug_seq": drug_seq,
        }
        sample_dict = self.crate_sample_dict(sample_inputs=inputs, model_holder=model_holder)
        prompt=sample_dict[ENCODER_INPUTS_STR]
        batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model)
        res = prompt, *self.decode_output(batch_dict,model_holder=model_holder)
        return res

    
    def create_demo(self,model_name_widget):
        
    # """
    # ### Using the model from

    # ```{model} ```
    # """
        with gr.Group() as demo:
            gr.Markdown(self.markup_text)
            with gr.Row():
                target_textbox = gr.Textbox(
                    label="target sequence",
                    # info="standard",
                    interactive=True,
                    lines=3,
                    value=self.examples["target_seq"],
                )
                drug_textbox = gr.Textbox(
                    label="Drug sequance (in SMILES)",
                    # info="standard",
                    interactive=True,
                    lines=3,
                    value=self.examples["drug_seq"],
                )
            with gr.Row():
                run_mammal = gr.Button(
                    "Run Mammal prompt for Protein-Protein Interaction", variant="primary"
                )
            with gr.Row():
                prompt_box = gr.Textbox(label="Mammal prompt", lines=5)

            with gr.Row():
                decoded = gr.Textbox(label="Mammal output key")
                run_mammal.click(
                    fn=self.create_and_run_prompt,
                    inputs=[model_name_widget, target_textbox, drug_textbox],
                    outputs=[prompt_box, decoded, gr.Number(label="binding affinity")],
                )
            demo.visible = False
            return demo

tdi_task = DtiTask()
all_tasks[tdi_task.name]=tdi_task

ppi_model = MammalObjectBroker(model_path="ibm/biomed.omics.bl.sm.ma-ted-458m", task_list=[ppi_task.name])
all_models[ppi_model.name]=ppi_model

tdi_model = MammalObjectBroker(model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd", task_list=[tdi_task.name])
all_models[tdi_model.name]=tdi_model


def create_application():
    def task_change(value):
        visibility = [gr.update(visible=(task==value)) for task in all_tasks.keys()]
            # all_tasks[task].demo().visible = 
        choices=[model_name for model_name, model in all_models.items() if value in model.tasks]
        if choices:
            return  (gr.update(choices=choices, value=choices[0]),*visibility)
        else:
            return (gr.skip,*visibility)
        # return model_name_dropdown
        
       
    with gr.Blocks() as application:
        task_dropdown = gr.Dropdown(choices=["select demo"] + list(all_tasks.keys()))
        task_dropdown.interactive = True
        model_name_dropdown = gr.Dropdown(choices=[model_name for model_name, model in all_models.items() if task_dropdown.value in model.tasks], interactive=True)
        
            



        ppi_demo = all_tasks[ppi_task.name].demo(model_name_widgit = model_name_dropdown)
        # ppi_demo.visible = True
        dtb_demo = all_tasks[tdi_task.name].demo(model_name_widgit = model_name_dropdown)

        task_dropdown.change(task_change,inputs=[task_dropdown],outputs=[model_name_dropdown]+[all_tasks[task].demo() for task in all_tasks])
        
        # def set_demo_vis(main_text):
        #     main_text=main_text
        #     print(f"main text is {main_text}")
        #     return gr.Group(visible=True)
        #     #return gr.Group(visible=(main_text == "PPI"))
        # # , gr.Group(                visible=(main_text == "DTI")            )


        # task_dropdown.change(
            # set_ppi_vis, inputs=task_dropdown, outputs=[ppi_demo]
        # )
        return application

full_demo=None

def main():
    global full_demo
    full_demo = create_application()
    full_demo.launch(show_error=True, share=False)


if __name__ == "__main__":
    main()