Spaces:
Running
Running
File size: 31,090 Bytes
85ec4af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Rhizome
# Version beta 0.0, August 2023
# Property of IBM Research, Accelerated Discovery
#
"""
PLEASE NOTE THIS IMPLEMENTATION INCLUDES THE ORIGINAL SOURCE CODE (AND SOME ADAPTATIONS)
OF THE MHG IMPLEMENTATION OF HIROSHI KAJINO AT IBM TRL ALREADY PUBLICLY AVAILABLE.
THIS MIGHT INFLUENCE THE DECISION OF THE FINAL LICENSE SO CAREFUL CHECK NEEDS BE DONE.
"""
""" Title """
__author__ = "Hiroshi Kajino <KAJINO@jp.ibm.com>"
__copyright__ = "(c) Copyright IBM Corp. 2017"
__version__ = "0.1"
__date__ = "Dec 11 2017"
from copy import deepcopy
from itertools import combinations
from ..hypergraph import Hypergraph
import networkx as nx
import numpy as np
class CliqueTree(nx.Graph):
''' clique tree object
Attributes
----------
hg : Hypergraph
This hypergraph will be decomposed.
root_hg : Hypergraph
Hypergraph on the root node.
ident_node_dict : dict
ident_node_dict[key_node] gives a list of nodes that are identical (i.e., the adjacent hyperedges are common)
'''
def __init__(self, hg=None, **kwargs):
self.hg = deepcopy(hg)
if self.hg is not None:
self.ident_node_dict = self.hg.get_identical_node_dict()
else:
self.ident_node_dict = {}
super().__init__(**kwargs)
@property
def root_hg(self):
''' return the hypergraph on the root node
'''
return self.nodes[0]['subhg']
@root_hg.setter
def root_hg(self, hypergraph):
''' set the hypergraph on the root node
'''
self.nodes[0]['subhg'] = hypergraph
def insert_subhg(self, subhypergraph: Hypergraph) -> None:
''' insert a subhypergraph, which is extracted from a root hypergraph, into the tree.
Parameters
----------
subhg : Hypergraph
'''
num_nodes = self.number_of_nodes()
self.add_node(num_nodes, subhg=subhypergraph)
self.add_edge(num_nodes, 0)
adj_nodes = deepcopy(list(self.adj[0].keys()))
for each_node in adj_nodes:
if len(self.nodes[each_node]["subhg"].nodes.intersection(
self.nodes[num_nodes]["subhg"].nodes)\
- self.root_hg.nodes) != 0 and each_node != num_nodes:
self.remove_edge(0, each_node)
self.add_edge(each_node, num_nodes)
def to_irredundant(self) -> None:
''' convert the clique tree to be irredundant
'''
for each_node in self.hg.nodes:
subtree = self.subgraph([
each_tree_node for each_tree_node in self.nodes()\
if each_node in self.nodes[each_tree_node]["subhg"].nodes]).copy()
leaf_node_list = [x for x in subtree.nodes() if subtree.degree(x)==1]
redundant_leaf_node_list = []
for each_leaf_node in leaf_node_list:
if len(self.nodes[each_leaf_node]["subhg"].adj_edges(each_node)) == 0:
redundant_leaf_node_list.append(each_leaf_node)
for each_red_leaf_node in redundant_leaf_node_list:
current_node = each_red_leaf_node
while subtree.degree(current_node) == 1 \
and len(subtree.nodes[current_node]["subhg"].adj_edges(each_node)) == 0:
self.nodes[current_node]["subhg"].remove_node(each_node)
remove_node = current_node
current_node = list(dict(subtree[remove_node]).keys())[0]
subtree.remove_node(remove_node)
fixed_node_set = deepcopy(self.nodes)
for each_node in fixed_node_set:
if self.nodes[each_node]["subhg"].num_edges == 0:
if len(self[each_node]) == 1:
self.remove_node(each_node)
elif len(self[each_node]) == 2:
self.add_edge(*self[each_node])
self.remove_node(each_node)
else:
pass
else:
pass
redundant = True
while redundant:
redundant = False
fixed_edge_set = deepcopy(self.edges)
remove_node_set = set()
for node_1, node_2 in fixed_edge_set:
if node_1 in remove_node_set or node_2 in remove_node_set:
pass
else:
if self.nodes[node_1]['subhg'].is_subhg(self.nodes[node_2]['subhg']):
redundant = True
adj_node_list = set(self.adj[node_1]) - {node_2}
self.remove_node(node_1)
remove_node_set.add(node_1)
for each_node in adj_node_list:
self.add_edge(node_2, each_node)
elif self.nodes[node_2]['subhg'].is_subhg(self.nodes[node_1]['subhg']):
redundant = True
adj_node_list = set(self.adj[node_2]) - {node_1}
self.remove_node(node_2)
remove_node_set.add(node_2)
for each_node in adj_node_list:
self.add_edge(node_1, each_node)
def node_update(self, key_node: str, subhg) -> None:
""" given a pair of a hypergraph, H, and its subhypergraph, sH, return a hypergraph H\sH.
Parameters
----------
key_node : str
key node that must be removed.
subhg : Hypegraph
"""
for each_edge in subhg.edges:
self.root_hg.remove_edge(each_edge)
self.root_hg.remove_nodes(self.ident_node_dict[key_node])
adj_node_list = list(subhg.nodes)
for each_node in subhg.nodes:
if each_node not in self.ident_node_dict[key_node]:
if set(self.root_hg.adj_edges(each_node)).issubset(subhg.edges):
self.root_hg.remove_node(each_node)
adj_node_list.remove(each_node)
else:
adj_node_list.remove(each_node)
for each_node_1, each_node_2 in combinations(adj_node_list, 2):
if not self.root_hg.is_adj(each_node_1, each_node_2):
self.root_hg.add_edge(set([each_node_1, each_node_2]), attr_dict=dict(tmp=True))
subhg.remove_edges_with_attr({'tmp' : True})
self.insert_subhg(subhg)
def update(self, subhg, remove_nodes=False):
""" given a pair of a hypergraph, H, and its subhypergraph, sH, return a hypergraph H\sH.
Parameters
----------
subhg : Hypegraph
"""
for each_edge in subhg.edges:
self.root_hg.remove_edge(each_edge)
if remove_nodes:
remove_edge_list = []
for each_edge in self.root_hg.edges:
if set(self.root_hg.nodes_in_edge(each_edge)).issubset(subhg.nodes)\
and self.root_hg.edge_attr(each_edge).get('tmp', False):
remove_edge_list.append(each_edge)
self.root_hg.remove_edges(remove_edge_list)
adj_node_list = list(subhg.nodes)
for each_node in subhg.nodes:
if self.root_hg.degree(each_node) == 0:
self.root_hg.remove_node(each_node)
adj_node_list.remove(each_node)
if len(adj_node_list) != 1 and not remove_nodes:
self.root_hg.add_edge(set(adj_node_list), attr_dict=dict(tmp=True))
'''
else:
for each_node_1, each_node_2 in combinations(adj_node_list, 2):
if not self.root_hg.is_adj(each_node_1, each_node_2):
self.root_hg.add_edge(
[each_node_1, each_node_2], attr_dict=dict(tmp=True))
'''
subhg.remove_edges_with_attr({'tmp':True})
self.insert_subhg(subhg)
def _get_min_deg_node(hg, ident_node_dict: dict, mode='mol'):
if mode == 'standard':
degree_dict = hg.degrees()
min_deg_node = min(degree_dict, key=degree_dict.get)
min_deg_subhg = hg.adj_subhg(min_deg_node, ident_node_dict)
return min_deg_node, min_deg_subhg
elif mode == 'mol':
degree_dict = hg.degrees()
min_deg = min(degree_dict.values())
min_deg_node_list = [each_node for each_node in hg.nodes if degree_dict[each_node]==min_deg]
min_deg_subhg_list = [hg.adj_subhg(each_min_deg_node, ident_node_dict)
for each_min_deg_node in min_deg_node_list]
best_score = np.inf
best_idx = -1
for each_idx in range(len(min_deg_subhg_list)):
if min_deg_subhg_list[each_idx].num_nodes < best_score:
best_idx = each_idx
return min_deg_node_list[each_idx], min_deg_subhg_list[each_idx]
else:
raise ValueError
def tree_decomposition(hg, irredundant=True):
""" compute a tree decomposition of the input hypergraph
Parameters
----------
hg : Hypergraph
hypergraph to be decomposed
irredundant : bool
if True, irredundant tree decomposition will be computed.
Returns
-------
clique_tree : nx.Graph
each node contains a subhypergraph of `hg`
"""
org_hg = hg.copy()
ident_node_dict = hg.get_identical_node_dict()
clique_tree = CliqueTree(org_hg)
clique_tree.add_node(0, subhg=org_hg)
while True:
degree_dict = org_hg.degrees()
min_deg_node = min(degree_dict, key=degree_dict.get)
min_deg_subhg = org_hg.adj_subhg(min_deg_node, ident_node_dict)
if org_hg.nodes == min_deg_subhg.nodes:
break
# org_hg and min_deg_subhg are divided
clique_tree.node_update(min_deg_node, min_deg_subhg)
clique_tree.root_hg.remove_edges_with_attr({'tmp' : True})
if irredundant:
clique_tree.to_irredundant()
return clique_tree
def tree_decomposition_with_hrg(hg, hrg, irredundant=True, return_root=False):
''' compute a tree decomposition given a hyperedge replacement grammar.
the resultant clique tree should induce a less compact HRG.
Parameters
----------
hg : Hypergraph
hypergraph to be decomposed
hrg : HyperedgeReplacementGrammar
current HRG
irredundant : bool
if True, irredundant tree decomposition will be computed.
Returns
-------
clique_tree : nx.Graph
each node contains a subhypergraph of `hg`
'''
org_hg = hg.copy()
ident_node_dict = hg.get_identical_node_dict()
clique_tree = CliqueTree(org_hg)
clique_tree.add_node(0, subhg=org_hg)
root_node = 0
# construct a clique tree using HRG
success_any = True
while success_any:
success_any = False
for each_prod_rule in hrg.prod_rule_list:
org_hg, success, subhg = each_prod_rule.revert(org_hg, True)
if success:
if each_prod_rule.is_start_rule: root_node = clique_tree.number_of_nodes()
success_any = True
subhg.remove_edges_with_attr({'terminal' : False})
clique_tree.root_hg = org_hg
clique_tree.insert_subhg(subhg)
clique_tree.root_hg = org_hg
for each_edge in deepcopy(org_hg.edges):
if not org_hg.edge_attr(each_edge)['terminal']:
node_list = org_hg.nodes_in_edge(each_edge)
org_hg.remove_edge(each_edge)
for each_node_1, each_node_2 in combinations(node_list, 2):
if not org_hg.is_adj(each_node_1, each_node_2):
org_hg.add_edge([each_node_1, each_node_2], attr_dict=dict(tmp=True))
# construct a clique tree using the existing algorithm
degree_dict = org_hg.degrees()
if degree_dict:
while True:
min_deg_node, min_deg_subhg = _get_min_deg_node(org_hg, ident_node_dict)
if org_hg.nodes == min_deg_subhg.nodes: break
# org_hg and min_deg_subhg are divided
clique_tree.node_update(min_deg_node, min_deg_subhg)
clique_tree.root_hg.remove_edges_with_attr({'tmp' : True})
if irredundant:
clique_tree.to_irredundant()
if return_root:
if root_node == 0 and 0 not in clique_tree.nodes:
root_node = clique_tree.number_of_nodes()
while root_node not in clique_tree.nodes:
root_node -= 1
elif root_node not in clique_tree.nodes:
while root_node not in clique_tree.nodes:
root_node -= 1
else:
pass
return clique_tree, root_node
else:
return clique_tree
def tree_decomposition_from_leaf(hg, irredundant=True):
""" compute a tree decomposition of the input hypergraph
Parameters
----------
hg : Hypergraph
hypergraph to be decomposed
irredundant : bool
if True, irredundant tree decomposition will be computed.
Returns
-------
clique_tree : nx.Graph
each node contains a subhypergraph of `hg`
"""
def apply_normal_decomposition(clique_tree):
degree_dict = clique_tree.root_hg.degrees()
min_deg_node = min(degree_dict, key=degree_dict.get)
min_deg_subhg = clique_tree.root_hg.adj_subhg(min_deg_node, clique_tree.ident_node_dict)
if clique_tree.root_hg.nodes == min_deg_subhg.nodes:
return clique_tree, False
clique_tree.node_update(min_deg_node, min_deg_subhg)
return clique_tree, True
def apply_min_edge_deg_decomposition(clique_tree):
edge_degree_dict = clique_tree.root_hg.edge_degrees()
non_tmp_edge_list = [each_edge for each_edge in clique_tree.root_hg.edges \
if not clique_tree.root_hg.edge_attr(each_edge).get('tmp')]
if not non_tmp_edge_list:
return clique_tree, False
min_deg_edge = None
min_deg = np.inf
for each_edge in non_tmp_edge_list:
if min_deg > edge_degree_dict[each_edge]:
min_deg_edge = each_edge
min_deg = edge_degree_dict[each_edge]
node_list = clique_tree.root_hg.nodes_in_edge(min_deg_edge)
min_deg_subhg = clique_tree.root_hg.get_subhg(
node_list, [min_deg_edge], clique_tree.ident_node_dict)
if clique_tree.root_hg.nodes == min_deg_subhg.nodes:
return clique_tree, False
clique_tree.update(min_deg_subhg)
return clique_tree, True
org_hg = hg.copy()
clique_tree = CliqueTree(org_hg)
clique_tree.add_node(0, subhg=org_hg)
success = True
while success:
clique_tree, success = apply_min_edge_deg_decomposition(clique_tree)
if not success:
clique_tree, success = apply_normal_decomposition(clique_tree)
clique_tree.root_hg.remove_edges_with_attr({'tmp' : True})
if irredundant:
clique_tree.to_irredundant()
return clique_tree
def topological_tree_decomposition(
hg, irredundant=True, rip_labels=True, shrink_cycle=False, contract_cycles=False):
''' compute a tree decomposition of the input hypergraph
Parameters
----------
hg : Hypergraph
hypergraph to be decomposed
irredundant : bool
if True, irredundant tree decomposition will be computed.
Returns
-------
clique_tree : CliqueTree
each node contains a subhypergraph of `hg`
'''
def _contract_tree(clique_tree):
''' contract a single leaf
Parameters
----------
clique_tree : CliqueTree
Returns
-------
CliqueTree, bool
bool represents whether this operation succeeds or not.
'''
edge_degree_dict = clique_tree.root_hg.edge_degrees()
leaf_edge_list = [each_edge for each_edge in clique_tree.root_hg.edges \
if (not clique_tree.root_hg.edge_attr(each_edge).get('tmp'))\
and edge_degree_dict[each_edge] == 1]
if not leaf_edge_list:
return clique_tree, False
min_deg_edge = leaf_edge_list[0]
node_list = clique_tree.root_hg.nodes_in_edge(min_deg_edge)
min_deg_subhg = clique_tree.root_hg.get_subhg(
node_list, [min_deg_edge], clique_tree.ident_node_dict)
if clique_tree.root_hg.nodes == min_deg_subhg.nodes:
return clique_tree, False
clique_tree.update(min_deg_subhg)
return clique_tree, True
def _rip_labels_from_cycles(clique_tree, org_hg):
''' rip hyperedge-labels off
Parameters
----------
clique_tree : CliqueTree
org_hg : Hypergraph
Returns
-------
CliqueTree, bool
bool represents whether this operation succeeds or not.
'''
ident_node_dict = clique_tree.ident_node_dict #hg.get_identical_node_dict()
for each_edge in clique_tree.root_hg.edges:
if each_edge in org_hg.edges:
if org_hg.in_cycle(each_edge):
node_list = clique_tree.root_hg.nodes_in_edge(each_edge)
subhg = clique_tree.root_hg.get_subhg(
node_list, [each_edge], ident_node_dict)
if clique_tree.root_hg.nodes == subhg.nodes:
return clique_tree, False
clique_tree.update(subhg)
'''
in_cycle_dict = {each_node: org_hg.node_attr(each_node)['is_in_ring'] for each_node in node_list}
if not all(in_cycle_dict.values()):
node_not_in_cycle = [each_node for each_node in in_cycle_dict.keys() if not in_cycle_dict[each_node]][0]
node_list = [node_not_in_cycle]
node_list.extend(clique_tree.root_hg.adj_nodes(node_not_in_cycle))
edge_list = clique_tree.root_hg.adj_edges(node_not_in_cycle)
import pdb; pdb.set_trace()
subhg = clique_tree.root_hg.get_subhg(
node_list, edge_list, ident_node_dict)
clique_tree.update(subhg)
'''
return clique_tree, True
return clique_tree, False
def _shrink_cycle(clique_tree):
''' shrink a cycle
Parameters
----------
clique_tree : CliqueTree
Returns
-------
CliqueTree, bool
bool represents whether this operation succeeds or not.
'''
def filter_subhg(subhg, hg, key_node):
num_nodes_cycle = 0
nodes_in_cycle_list = []
for each_node in subhg.nodes:
if hg.in_cycle(each_node):
num_nodes_cycle += 1
if each_node != key_node:
nodes_in_cycle_list.append(each_node)
if num_nodes_cycle > 3:
break
if num_nodes_cycle != 3:
return False
else:
for each_edge in hg.edges:
if set(nodes_in_cycle_list).issubset(hg.nodes_in_edge(each_edge)):
return False
return True
#ident_node_dict = hg.get_identical_node_dict()
ident_node_dict = clique_tree.ident_node_dict
for each_node in clique_tree.root_hg.nodes:
if clique_tree.root_hg.in_cycle(each_node)\
and filter_subhg(clique_tree.root_hg.adj_subhg(each_node, ident_node_dict),
clique_tree.root_hg,
each_node):
target_node = each_node
target_subhg = clique_tree.root_hg.adj_subhg(target_node, ident_node_dict)
if clique_tree.root_hg.nodes == target_subhg.nodes:
return clique_tree, False
clique_tree.update(target_subhg)
return clique_tree, True
return clique_tree, False
def _contract_cycles(clique_tree):
'''
remove a subhypergraph that looks like a cycle on a leaf.
Parameters
----------
clique_tree : CliqueTree
Returns
-------
CliqueTree, bool
bool represents whether this operation succeeds or not.
'''
def _divide_hg(hg):
''' divide a hypergraph into subhypergraphs such that
each subhypergraph is connected to each other in a tree-like way.
Parameters
----------
hg : Hypergraph
Returns
-------
list of Hypergraphs
each element corresponds to a subhypergraph of `hg`
'''
for each_node in hg.nodes:
if hg.is_dividable(each_node):
adj_edges_dict = {each_edge: hg.in_cycle(each_edge) for each_edge in hg.adj_edges(each_node)}
'''
if any(adj_edges_dict.values()):
import pdb; pdb.set_trace()
edge_in_cycle = [each_key for each_key, each_val in adj_edges_dict.items() if each_val][0]
subhg1, subhg2, subhg3 = hg.divide(each_node, edge_in_cycle)
return _divide_hg(subhg1) + _divide_hg(subhg2) + _divide_hg(subhg3)
else:
'''
subhg1, subhg2 = hg.divide(each_node)
return _divide_hg(subhg1) + _divide_hg(subhg2)
return [hg]
def _is_leaf(hg, divided_subhg) -> bool:
''' judge whether subhg is a leaf-like in the original hypergraph
Parameters
----------
hg : Hypergraph
divided_subhg : Hypergraph
`divided_subhg` is a subhypergraph of `hg`
Returns
-------
bool
'''
'''
adj_edges_set = set([])
for each_node in divided_subhg.nodes:
adj_edges_set.update(set(hg.adj_edges(each_node)))
_hg = deepcopy(hg)
_hg.remove_subhg(divided_subhg)
if nx.is_connected(_hg.hg) != (len(adj_edges_set - divided_subhg.edges) == 1):
import pdb; pdb.set_trace()
return len(adj_edges_set - divided_subhg.edges) == 1
'''
_hg = deepcopy(hg)
_hg.remove_subhg(divided_subhg)
return nx.is_connected(_hg.hg)
subhg_list = _divide_hg(clique_tree.root_hg)
if len(subhg_list) == 1:
return clique_tree, False
else:
while len(subhg_list) > 1:
max_leaf_subhg = None
for each_subhg in subhg_list:
if _is_leaf(clique_tree.root_hg, each_subhg):
if max_leaf_subhg is None:
max_leaf_subhg = each_subhg
elif max_leaf_subhg.num_nodes < each_subhg.num_nodes:
max_leaf_subhg = each_subhg
clique_tree.update(max_leaf_subhg)
subhg_list.remove(max_leaf_subhg)
return clique_tree, True
org_hg = hg.copy()
clique_tree = CliqueTree(org_hg)
clique_tree.add_node(0, subhg=org_hg)
success = True
while success:
'''
clique_tree, success = _rip_labels_from_cycles(clique_tree, hg)
if not success:
clique_tree, success = _contract_cycles(clique_tree)
'''
clique_tree, success = _contract_tree(clique_tree)
if not success:
if rip_labels:
clique_tree, success = _rip_labels_from_cycles(clique_tree, hg)
if not success:
if shrink_cycle:
clique_tree, success = _shrink_cycle(clique_tree)
if not success:
if contract_cycles:
clique_tree, success = _contract_cycles(clique_tree)
clique_tree.root_hg.remove_edges_with_attr({'tmp' : True})
if irredundant:
clique_tree.to_irredundant()
return clique_tree
def molecular_tree_decomposition(hg, irredundant=True):
""" compute a tree decomposition of the input molecular hypergraph
Parameters
----------
hg : Hypergraph
molecular hypergraph to be decomposed
irredundant : bool
if True, irredundant tree decomposition will be computed.
Returns
-------
clique_tree : CliqueTree
each node contains a subhypergraph of `hg`
"""
def _divide_hg(hg):
''' divide a hypergraph into subhypergraphs such that
each subhypergraph is connected to each other in a tree-like way.
Parameters
----------
hg : Hypergraph
Returns
-------
list of Hypergraphs
each element corresponds to a subhypergraph of `hg`
'''
is_ring = False
for each_node in hg.nodes:
if hg.node_attr(each_node)['is_in_ring']:
is_ring = True
if not hg.node_attr(each_node)['is_in_ring'] \
and hg.degree(each_node) == 2:
subhg1, subhg2 = hg.divide(each_node)
return _divide_hg(subhg1) + _divide_hg(subhg2)
if is_ring:
subhg_list = []
remove_edge_list = []
remove_node_list = []
for each_edge in hg.edges:
node_list = hg.nodes_in_edge(each_edge)
subhg = hg.get_subhg(node_list, [each_edge], hg.get_identical_node_dict())
subhg_list.append(subhg)
remove_edge_list.append(each_edge)
for each_node in node_list:
if not hg.node_attr(each_node)['is_in_ring']:
remove_node_list.append(each_node)
hg.remove_edges(remove_edge_list)
hg.remove_nodes(remove_node_list, False)
return subhg_list + [hg]
else:
return [hg]
org_hg = hg.copy()
clique_tree = CliqueTree(org_hg)
clique_tree.add_node(0, subhg=org_hg)
subhg_list = _divide_hg(deepcopy(clique_tree.root_hg))
#_subhg_list = deepcopy(subhg_list)
if len(subhg_list) == 1:
pass
else:
while len(subhg_list) > 1:
max_leaf_subhg = None
for each_subhg in subhg_list:
if _is_leaf(clique_tree.root_hg, each_subhg) and not _is_ring(each_subhg):
if max_leaf_subhg is None:
max_leaf_subhg = each_subhg
elif max_leaf_subhg.num_nodes < each_subhg.num_nodes:
max_leaf_subhg = each_subhg
if max_leaf_subhg is None:
for each_subhg in subhg_list:
if _is_ring_label(clique_tree.root_hg, each_subhg):
if max_leaf_subhg is None:
max_leaf_subhg = each_subhg
elif max_leaf_subhg.num_nodes < each_subhg.num_nodes:
max_leaf_subhg = each_subhg
if max_leaf_subhg is not None:
clique_tree.update(max_leaf_subhg)
subhg_list.remove(max_leaf_subhg)
else:
for each_subhg in subhg_list:
if _is_leaf(clique_tree.root_hg, each_subhg):
if max_leaf_subhg is None:
max_leaf_subhg = each_subhg
elif max_leaf_subhg.num_nodes < each_subhg.num_nodes:
max_leaf_subhg = each_subhg
if max_leaf_subhg is not None:
clique_tree.update(max_leaf_subhg, True)
subhg_list.remove(max_leaf_subhg)
else:
break
if len(subhg_list) > 1:
'''
for each_idx, each_subhg in enumerate(subhg_list):
each_subhg.draw(f'{each_idx}', True)
clique_tree.root_hg.draw('root', True)
import pickle
with open('buggy_hg.pkl', 'wb') as f:
pickle.dump(hg, f)
return clique_tree, subhg_list, _subhg_list
'''
raise RuntimeError('bug in tree decomposition algorithm')
clique_tree.root_hg.remove_edges_with_attr({'tmp' : True})
'''
for each_tree_node in clique_tree.adj[0]:
subhg = clique_tree.nodes[each_tree_node]['subhg']
for each_edge in subhg.edges:
if set(subhg.nodes_in_edge(each_edge)).issubset(clique_tree.root_hg.nodes):
clique_tree.root_hg.add_edge(set(subhg.nodes_in_edge(each_edge)), attr_dict=dict(tmp=True))
'''
if irredundant:
clique_tree.to_irredundant()
return clique_tree #, _subhg_list
def _is_leaf(hg, subhg) -> bool:
''' judge whether subhg is a leaf-like in the original hypergraph
Parameters
----------
hg : Hypergraph
subhg : Hypergraph
`subhg` is a subhypergraph of `hg`
Returns
-------
bool
'''
if len(subhg.edges) == 0:
adj_edge_set = set([])
subhg_edge_set = set([])
for each_edge in hg.edges:
if set(hg.nodes_in_edge(each_edge)).issubset(subhg.nodes) and hg.edge_attr(each_edge).get('tmp', False):
subhg_edge_set.add(each_edge)
for each_node in subhg.nodes:
adj_edge_set.update(set(hg.adj_edges(each_node)))
if subhg_edge_set.issubset(adj_edge_set) and len(adj_edge_set.difference(subhg_edge_set)) == 1:
return True
else:
return False
elif len(subhg.edges) == 1:
adj_edge_set = set([])
subhg_edge_set = subhg.edges
for each_node in subhg.nodes:
for each_adj_edge in hg.adj_edges(each_node):
adj_edge_set.add(each_adj_edge)
if subhg_edge_set.issubset(adj_edge_set) and len(adj_edge_set.difference(subhg_edge_set)) == 1:
return True
else:
return False
else:
raise ValueError('subhg should be nodes only or one-edge hypergraph.')
def _is_ring_label(hg, subhg):
if len(subhg.edges) != 1:
return False
edge_name = list(subhg.edges)[0]
#assert edge_name in hg.edges, f'{edge_name}'
is_in_ring = False
for each_node in subhg.nodes:
if subhg.node_attr(each_node)['is_in_ring']:
is_in_ring = True
else:
adj_edge_list = list(hg.adj_edges(each_node))
adj_edge_list.remove(edge_name)
if len(adj_edge_list) == 1:
if not hg.edge_attr(adj_edge_list[0]).get('tmp', False):
return False
elif len(adj_edge_list) == 0:
pass
else:
raise ValueError
if is_in_ring:
return True
else:
return False
def _is_ring(hg):
for each_node in hg.nodes:
if not hg.node_attr(each_node)['is_in_ring']:
return False
return True
|