Spaces:
Runtime error
Runtime error
File size: 4,876 Bytes
eddf472 4f00883 eddf472 4f00883 665d69d eddf472 b76dc12 eddf472 b76dc12 eddf472 d40a262 eddf472 d40a262 eddf472 d40a262 eddf472 d40a262 eddf472 d40a262 eddf472 b76dc12 eddf472 8131ffc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import sys
import pickle
import os
import numpy as np
import PIL.Image
import IPython.display
from IPython.display import Image
import matplotlib.pyplot as plt
import gradio as gr
sys.path.insert(0, "/StyleGAN2-GANbanales")
import dnnlib
#from StyleGAN2-GANbanales import dnnlib.tflib as tflib
##############################################################################
# Generation functions
def seed2vec(Gs, seed):
rnd = np.random.RandomState(seed)
return rnd.randn(1, *Gs.input_shape[1:])
def init_random_state(Gs, seed):
rnd = np.random.RandomState(seed)
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]
dnnlib.tflib.set_vars({var: rnd.randn(*var.shape.as_list()) for var in noise_vars}) # [height, width]
def generate_image(Gs, z, truncation_psi, prefix="image", save=False, show=False):
# Render images for dlatents initialized from random seeds.
Gs_kwargs = {
'output_transform': dict(func=dnnlib.tflib.convert_images_to_uint8, nchw_to_nhwc=True),
'randomize_noise': False
}
if truncation_psi is not None:
Gs_kwargs['truncation_psi'] = truncation_psi
label = np.zeros([1] + Gs.input_shapes[1][1:])
images = Gs.run(z, label, **Gs_kwargs) # [minibatch, height, width, channel]
if save == True:
path = f"{prefix}.png"
PIL.Image.fromarray(images[0], 'RGB').save(path)
if show == True:
return images[0]
##############################################################################
# Function concatenate
def concatenate(img_array):
zeros = np.zeros([256,256,3], dtype=np.uint8)
zeros.fill(255)
white_img = zeros
# 1 - 2 images
if len(img_array) <= 2:
row_img = img_array[0]
for i in img_array[1:]:
row_img = np.hstack((row_img, i))
final_img = row_img
# 3 - 4 images
elif len(img_array) >= 3 and len(img_array) <= 4:
row1_img = img_array[0]
for i in img_array[1:2]:
row1_img = np.hstack((row1_img, i))
row2_img = img_array[2]
for i in img_array[3:]:
row2_img = np.hstack((row2_img, i))
for i in range(4-len(img_array)):
row2_img = np.hstack((row2_img, white_img))
final_img = np.vstack((row1_img, row2_img))
# 5 - 6 images
elif len(img_array) >= 4 and len(img_array) <= 6:
row1_img = img_array[0]
for i in img_array[1:3]:
row1_img = cv2.hconcat([row1_img, i])
row2_img = img_array[3]
for i in img_array[4:]:
row2_img = cv2.hconcat([row2_img, i])
for i in range(6-len(img_array)):
row2_img = cv2.hconcat([row2_img, white_img])
final_img = cv2.vconcat([row1_img, row2_img])
# 7 - 9 images
elif len(img_array) >= 7:
row1_img = img_array[0]
for i in img_array[1:3]:
row1_img = cv2.hconcat([row1_img, i])
row2_img = img_array[3]
for i in img_array[4:6]:
row2_img = cv2.hconcat([row2_img, i])
row3_img = img_array[6]
for i in img_array[7:9]:
row3_img = cv2.hconcat([row3_img, i])
for i in range(9-len(img_array)):
row3_img = cv2.hconcat([row3_img, white_img])
final_img = cv2.vconcat([row1_img, row2_img])
final_img = cv2.vconcat([final_img, row3_img])
return final_img
##############################################################################
# Function initiate
def initiate(seed, n_imgs, text):
pkl_file = "networks/experimento_2.pkl"
dnnlib.tflib.init_tf()
with open(pkl_file, 'rb') as pickle_file:
_G, _D, Gs = pickle.load(pickle_file)
img_array = []
first_seed = seed
for i in range(seed, seed+n_imgs):
init_random_state(Gs, 10)
z = seed2vec(Gs, seed)
img = generate_image(Gs, z, 1.0, show=True)
img_array.append(img)
seed+=1
final_img = concatenate(img_array)
return final_img, "Im谩genes generadas"
##############################################################################
# Gradio code
iface = gr.Interface(
fn=initiate,
inputs=[gr.inputs.Slider(0, 99999999, "image"), gr.inputs.Slider(1, 9, "images"), "text"],
outputs=["image", "text"],
examples=[
[40, 1, "Edificios al anochecer"],
[37, 1, "Fuente de d铆a"],
[426, 1, "Edificios con cielo oscuro"],
[397, 1, "Edificios de d铆a"],
[395, 1, "Edificios desde anfiteatro"],
[281, 1, "Edificios con luces encendidas"],
[230, 1, "Edificios con luces encendidas y vegetaci贸n"],
[221, 1, "Edificios con vegetaci贸n"],
[214, 1, "Edificios al atardecer con luces encendidas"],
[198, 1, "Edificio al anochecer con luces en el pasillo"]
],
title="GANbanales",
description="Una GAN para generar im谩genes del campus universitario de Rabanales, C贸rdoba."
)
if __name__ == "__main__":
app, local_url, share_url = iface.launch(debug=True) |