update to latest version

#5
by akhaliq HF Staff - opened
.pre-commit-config.yaml CHANGED
@@ -1,61 +1,46 @@
1
- exclude: ^patch
2
  repos:
3
- - repo: https://github.com/pre-commit/pre-commit-hooks
4
- rev: v4.6.0
5
- hooks:
6
- - id: check-executables-have-shebangs
7
- - id: check-json
8
- - id: check-merge-conflict
9
- - id: check-shebang-scripts-are-executable
10
- - id: check-toml
11
- - id: check-yaml
12
- - id: end-of-file-fixer
13
- - id: mixed-line-ending
14
- args: ["--fix=lf"]
15
- - id: requirements-txt-fixer
16
- - id: trailing-whitespace
17
- - repo: https://github.com/myint/docformatter
18
- rev: v1.7.5
19
- hooks:
20
- - id: docformatter
21
- args: ["--in-place"]
22
- - repo: https://github.com/pycqa/isort
23
- rev: 5.13.2
24
- hooks:
25
- - id: isort
26
- args: ["--profile", "black"]
27
- - repo: https://github.com/pre-commit/mirrors-mypy
28
- rev: v1.10.0
29
- hooks:
30
- - id: mypy
31
- args: ["--ignore-missing-imports"]
32
- additional_dependencies:
33
- [
34
- "types-python-slugify",
35
- "types-requests",
36
- "types-PyYAML",
37
- "types-pytz",
38
- ]
39
- - repo: https://github.com/psf/black
40
- rev: 24.4.2
41
- hooks:
42
- - id: black
43
- language_version: python3.10
44
- args: ["--line-length", "119"]
45
- - repo: https://github.com/kynan/nbstripout
46
- rev: 0.7.1
47
- hooks:
48
- - id: nbstripout
49
- args:
50
- [
51
- "--extra-keys",
52
- "metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
53
- ]
54
- - repo: https://github.com/nbQA-dev/nbQA
55
- rev: 1.8.5
56
- hooks:
57
- - id: nbqa-black
58
- - id: nbqa-pyupgrade
59
- args: ["--py37-plus"]
60
- - id: nbqa-isort
61
- args: ["--float-to-top"]
 
1
+ exclude: ^(Text2Human|patch)
2
  repos:
3
+ - repo: https://github.com/pre-commit/pre-commit-hooks
4
+ rev: v4.2.0
5
+ hooks:
6
+ - id: check-executables-have-shebangs
7
+ - id: check-json
8
+ - id: check-merge-conflict
9
+ - id: check-shebang-scripts-are-executable
10
+ - id: check-toml
11
+ - id: check-yaml
12
+ - id: double-quote-string-fixer
13
+ - id: end-of-file-fixer
14
+ - id: mixed-line-ending
15
+ args: ['--fix=lf']
16
+ - id: requirements-txt-fixer
17
+ - id: trailing-whitespace
18
+ - repo: https://github.com/myint/docformatter
19
+ rev: v1.4
20
+ hooks:
21
+ - id: docformatter
22
+ args: ['--in-place']
23
+ - repo: https://github.com/pycqa/isort
24
+ rev: 5.10.1
25
+ hooks:
26
+ - id: isort
27
+ - repo: https://github.com/pre-commit/mirrors-mypy
28
+ rev: v0.812
29
+ hooks:
30
+ - id: mypy
31
+ args: ['--ignore-missing-imports']
32
+ - repo: https://github.com/google/yapf
33
+ rev: v0.32.0
34
+ hooks:
35
+ - id: yapf
36
+ args: ['--parallel', '--in-place']
37
+ - repo: https://github.com/kynan/nbstripout
38
+ rev: 0.5.0
39
+ hooks:
40
+ - id: nbstripout
41
+ args: ['--extra-keys', 'metadata.interpreter metadata.kernelspec cell.metadata.pycharm']
42
+ - repo: https://github.com/nbQA-dev/nbQA
43
+ rev: 1.3.1
44
+ hooks:
45
+ - id: nbqa-isort
46
+ - id: nbqa-yapf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.style.yapf ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ [style]
2
+ based_on_style = pep8
3
+ blank_line_before_nested_class_or_def = false
4
+ spaces_before_comment = 2
5
+ split_before_logical_operator = true
README.md CHANGED
@@ -4,10 +4,9 @@ emoji: 🏃
4
  colorFrom: purple
5
  colorTo: gray
6
  sdk: gradio
7
- sdk_version: 4.36.1
8
  app_file: app.py
9
  pinned: false
10
- suggested_hardware: t4-small
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
4
  colorFrom: purple
5
  colorTo: gray
6
  sdk: gradio
7
+ sdk_version: 3.0.13
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
app.py CHANGED
@@ -2,132 +2,152 @@
2
 
3
  from __future__ import annotations
4
 
 
5
  import os
6
  import pathlib
7
- import random
8
- import shlex
9
  import subprocess
10
 
11
- if os.getenv("SYSTEM") == "spaces":
12
- subprocess.run(shlex.split("pip install click==7.1.2"))
13
- subprocess.run(shlex.split("pip install typer==0.9.4"))
14
-
15
- import mim
16
-
17
- mim.uninstall("mmcv-full", confirm_yes=True)
18
- mim.install("mmcv-full==1.5.2", is_yes=True)
19
-
20
- with open("patch") as f:
21
- subprocess.run(shlex.split("patch -p1"), cwd="Text2Human", stdin=f)
22
-
23
-
24
  import gradio as gr
25
- import numpy as np
 
 
 
 
26
 
27
  from model import Model
28
 
29
- DESCRIPTION = """# [Text2Human](https://github.com/yumingj/Text2Human)
30
 
 
31
  You can modify sample steps and seeds. By varying seeds, you can sample different human images under the same pose, shape description, and texture description. The larger the sample steps, the better quality of the generated images. (The default value of sample steps is 256 in the original repo.)
32
 
33
  Label image generation step can be skipped. However, in that case, the input label image must be 512x256 in size and must contain only the specified colors.
34
- """
35
-
36
- MAX_SEED = np.iinfo(np.int32).max
37
-
38
-
39
- def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
40
- if randomize_seed:
41
- seed = random.randint(0, MAX_SEED)
42
- return seed
43
-
44
-
45
- model = Model()
46
-
47
- with gr.Blocks(css="style.css") as demo:
48
- gr.Markdown(DESCRIPTION)
49
-
50
- with gr.Row():
51
- with gr.Column():
52
- with gr.Row():
53
- input_image = gr.Image(label="Input Pose Image", type="pil", elem_id="input-image")
54
- pose_data = gr.State()
55
- with gr.Row():
56
- paths = sorted(pathlib.Path("pose_images").glob("*.png"))
57
- gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image)
58
-
59
- with gr.Row():
60
- shape_text = gr.Textbox(
61
- label="Shape Description",
62
- placeholder="""<gender>, <sleeve length>, <length of lower clothing>, <outer clothing type>, <other accessories1>, ...
63
- Note: The outer clothing type and accessories can be omitted.""",
64
- )
65
- with gr.Row():
66
- gr.Examples(
67
- examples=[["man, sleeveless T-shirt, long pants"], ["woman, short-sleeve T-shirt, short jeans"]],
68
- inputs=shape_text,
69
- )
70
- with gr.Row():
71
- generate_label_button = gr.Button("Generate Label Image")
72
-
73
- with gr.Column():
74
- with gr.Row():
75
- label_image = gr.Image(label="Label Image", type="numpy", format="png", elem_id="label-image")
76
-
77
- with gr.Row():
78
- texture_text = gr.Textbox(
79
- label="Texture Description",
80
- placeholder="""<upper clothing texture>, <lower clothing texture>, <outer clothing texture>
81
- Note: Currently, only 5 types of textures are supported, i.e., pure color, stripe/spline, plaid/lattice, floral, denim.""",
82
- )
83
- with gr.Row():
84
- gr.Examples(
85
- examples=[
86
- ["pure color, denim"],
87
- ["floral, stripe"],
88
- ],
89
- inputs=texture_text,
90
- )
91
- with gr.Row():
92
- sample_steps = gr.Slider(label="Sample Steps", minimum=10, maximum=300, step=1, value=256)
93
- with gr.Row():
94
- seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
95
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
96
- with gr.Row():
97
- generate_human_button = gr.Button("Generate Human")
98
-
99
- with gr.Column():
100
- with gr.Row():
101
- result = gr.Image(label="Result")
102
-
103
- input_image.change(
104
- fn=model.process_pose_image,
105
- inputs=input_image,
106
- outputs=pose_data,
107
- )
108
- generate_label_button.click(
109
- fn=model.generate_label_image,
110
- inputs=[
111
- pose_data,
112
- shape_text,
113
- ],
114
- outputs=label_image,
115
- )
116
- generate_human_button.click(
117
- fn=randomize_seed_fn,
118
- inputs=[seed, randomize_seed],
119
- outputs=seed,
120
- queue=False,
121
- ).then(
122
- fn=model.generate_human,
123
- inputs=[
124
- label_image,
125
- texture_text,
126
- sample_steps,
127
- seed,
128
- ],
129
- outputs=result,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  )
131
 
132
- if __name__ == "__main__":
133
- demo.queue(max_size=10).launch()
 
 
2
 
3
  from __future__ import annotations
4
 
5
+ import argparse
6
  import os
7
  import pathlib
 
 
8
  import subprocess
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  import gradio as gr
11
+
12
+ if os.getenv('SYSTEM') == 'spaces':
13
+ subprocess.call('pip uninstall -y mmcv-full'.split())
14
+ subprocess.call('pip install mmcv-full==1.5.2'.split())
15
+ subprocess.call('git apply ../patch'.split(), cwd='Text2Human')
16
 
17
  from model import Model
18
 
19
+ DESCRIPTION = '''# Text2Human
20
 
21
+ This is an unofficial demo for <a href="https://github.com/yumingj/Text2Human">https://github.com/yumingj/Text2Human</a>.
22
  You can modify sample steps and seeds. By varying seeds, you can sample different human images under the same pose, shape description, and texture description. The larger the sample steps, the better quality of the generated images. (The default value of sample steps is 256 in the original repo.)
23
 
24
  Label image generation step can be skipped. However, in that case, the input label image must be 512x256 in size and must contain only the specified colors.
25
+ '''
26
+ FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.text2human" />'
27
+
28
+
29
+ def parse_args() -> argparse.Namespace:
30
+ parser = argparse.ArgumentParser()
31
+ parser.add_argument('--device', type=str, default='cpu')
32
+ parser.add_argument('--theme', type=str)
33
+ parser.add_argument('--share', action='store_true')
34
+ parser.add_argument('--port', type=int)
35
+ parser.add_argument('--disable-queue',
36
+ dest='enable_queue',
37
+ action='store_false')
38
+ return parser.parse_args()
39
+
40
+
41
+ def set_example_image(example: list) -> dict:
42
+ return gr.Image.update(value=example[0])
43
+
44
+
45
+ def set_example_text(example: list) -> dict:
46
+ return gr.Textbox.update(value=example[0])
47
+
48
+
49
+ def main():
50
+ args = parse_args()
51
+ model = Model(args.device)
52
+
53
+ with gr.Blocks(theme=args.theme, css='style.css') as demo:
54
+ gr.Markdown(DESCRIPTION)
55
+
56
+ with gr.Row():
57
+ with gr.Column():
58
+ with gr.Row():
59
+ input_image = gr.Image(label='Input Pose Image',
60
+ type='pil',
61
+ elem_id='input-image')
62
+ pose_data = gr.Variable()
63
+ with gr.Row():
64
+ paths = sorted(pathlib.Path('pose_images').glob('*.png'))
65
+ example_images = gr.Dataset(components=[input_image],
66
+ samples=[[path.as_posix()]
67
+ for path in paths])
68
+ with gr.Row():
69
+ shape_text = gr.Textbox(
70
+ label='Shape Description',
71
+ placeholder=
72
+ '''<gender>, <sleeve length>, <length of lower clothing>, <outer clothing type>, <other accessories1>, ...
73
+ Note: The outer clothing type and accessories can be omitted.''')
74
+ with gr.Row():
75
+ shape_example_texts = gr.Dataset(
76
+ components=[shape_text],
77
+ samples=[['man, sleeveless T-shirt, long pants'],
78
+ ['woman, short-sleeve T-shirt, short jeans']])
79
+ with gr.Row():
80
+ generate_label_button = gr.Button('Generate Label Image')
81
+
82
+ with gr.Column():
83
+ with gr.Row():
84
+ label_image = gr.Image(label='Label Image',
85
+ type='numpy',
86
+ elem_id='label-image')
87
+ with gr.Row():
88
+ texture_text = gr.Textbox(
89
+ label='Texture Description',
90
+ placeholder=
91
+ '''<upper clothing texture>, <lower clothing texture>, <outer clothing texture>
92
+ Note: Currently, only 5 types of textures are supported, i.e., pure color, stripe/spline, plaid/lattice, floral, denim.'''
93
+ )
94
+ with gr.Row():
95
+ texture_example_texts = gr.Dataset(
96
+ components=[texture_text],
97
+ samples=[['pure color, denim'], ['floral, stripe']])
98
+ with gr.Row():
99
+ sample_steps = gr.Slider(10,
100
+ 300,
101
+ value=10,
102
+ step=10,
103
+ label='Sample Steps')
104
+ with gr.Row():
105
+ seed = gr.Slider(0, 1000000, value=0, step=1, label='Seed')
106
+ with gr.Row():
107
+ generate_human_button = gr.Button('Generate Human')
108
+
109
+ with gr.Column():
110
+ with gr.Row():
111
+ result = gr.Image(label='Result',
112
+ type='numpy',
113
+ elem_id='result-image')
114
+
115
+ gr.Markdown(FOOTER)
116
+
117
+ input_image.change(fn=model.process_pose_image,
118
+ inputs=input_image,
119
+ outputs=pose_data)
120
+ generate_label_button.click(fn=model.generate_label_image,
121
+ inputs=[
122
+ pose_data,
123
+ shape_text,
124
+ ],
125
+ outputs=label_image)
126
+ generate_human_button.click(fn=model.generate_human,
127
+ inputs=[
128
+ label_image,
129
+ texture_text,
130
+ sample_steps,
131
+ seed,
132
+ ],
133
+ outputs=result)
134
+ example_images.click(fn=set_example_image,
135
+ inputs=example_images,
136
+ outputs=example_images.components)
137
+ shape_example_texts.click(fn=set_example_text,
138
+ inputs=shape_example_texts,
139
+ outputs=shape_example_texts.components)
140
+ texture_example_texts.click(fn=set_example_text,
141
+ inputs=texture_example_texts,
142
+ outputs=texture_example_texts.components)
143
+
144
+ demo.launch(
145
+ enable_queue=args.enable_queue,
146
+ server_port=args.port,
147
+ share=args.share,
148
+ debug=True,
149
  )
150
 
151
+
152
+ if __name__ == '__main__':
153
+ main()
model.py CHANGED
@@ -1,5 +1,7 @@
1
  from __future__ import annotations
2
 
 
 
3
  import pathlib
4
  import sys
5
  import zipfile
@@ -9,13 +11,25 @@ import numpy as np
9
  import PIL.Image
10
  import torch
11
 
12
- sys.path.insert(0, "Text2Human")
13
 
14
  from models.sample_model import SampleFromPoseModel
15
- from utils.language_utils import generate_shape_attributes, generate_texture_attributes
 
16
  from utils.options import dict_to_nonedict, parse
17
  from utils.util import set_random_seed
18
 
 
 
 
 
 
 
 
 
 
 
 
19
  COLOR_LIST = [
20
  (0, 0, 0),
21
  (255, 250, 250),
@@ -45,44 +59,53 @@ COLOR_LIST = [
45
 
46
 
47
  class Model:
48
- def __init__(self):
49
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
50
  self.config = self._load_config()
51
- self.config["device"] = device.type
52
  self._download_models()
53
  self.model = SampleFromPoseModel(self.config)
54
  self.model.batch_size = 1
55
 
56
  def _load_config(self) -> dict:
57
- path = "Text2Human/configs/sample_from_pose.yml"
58
  config = parse(path, is_train=False)
59
  config = dict_to_nonedict(config)
60
  return config
61
 
62
  def _download_models(self) -> None:
63
- model_dir = pathlib.Path("pretrained_models")
64
  if model_dir.exists():
65
  return
66
- path = huggingface_hub.hf_hub_download("yumingj/Text2Human_SSHQ", "pretrained_models.zip")
 
 
 
67
  model_dir.mkdir()
68
  with zipfile.ZipFile(path) as f:
69
  f.extractall(model_dir)
70
 
71
  @staticmethod
72
  def preprocess_pose_image(image: PIL.Image.Image) -> torch.Tensor:
73
- image = (
74
- np.array(image.resize(size=(256, 512), resample=PIL.Image.Resampling.LANCZOS))[:, :, 2:]
75
- .transpose(2, 0, 1)
76
- .astype(np.float32)
77
- )
78
- image = image / 12.0 - 1
 
79
  data = torch.from_numpy(image).unsqueeze(1)
80
  return data
81
 
82
  @staticmethod
83
  def process_mask(mask: np.ndarray) -> np.ndarray:
 
84
  if mask.shape != (512, 256, 3):
85
  return None
 
 
 
 
 
86
  seg_map = np.full(mask.shape[:-1], -1)
87
  for index, color in enumerate(COLOR_LIST):
88
  seg_map[np.sum(mask == color, axis=2) == 3] = index
@@ -105,9 +128,11 @@ class Model:
105
  self.model.feed_pose_data(data)
106
  return data
107
 
108
- def generate_label_image(self, pose_data: torch.Tensor, shape_text: str) -> np.ndarray:
 
109
  if pose_data is None:
110
  return
 
111
  self.model.feed_pose_data(pose_data)
112
  shape_attributes = generate_shape_attributes(shape_text)
113
  shape_attributes = torch.LongTensor(shape_attributes).unsqueeze(0)
@@ -117,14 +142,18 @@ class Model:
117
  colored_segm = self.model.palette_result(self.model.segm[0].cpu())
118
  return colored_segm
119
 
120
- def generate_human(self, label_image: np.ndarray, texture_text: str, sample_steps: int, seed: int) -> np.ndarray:
 
121
  if label_image is None:
122
  return
 
 
123
  mask = label_image.copy()
124
  seg_map = self.process_mask(mask)
125
  if seg_map is None:
126
  return
127
- self.model.segm = torch.from_numpy(seg_map).unsqueeze(0).unsqueeze(0).to(self.model.device)
 
128
  self.model.generate_quantized_segm()
129
 
130
  set_random_seed(seed)
 
1
  from __future__ import annotations
2
 
3
+ import logging
4
+ import os
5
  import pathlib
6
  import sys
7
  import zipfile
 
11
  import PIL.Image
12
  import torch
13
 
14
+ sys.path.insert(0, 'Text2Human')
15
 
16
  from models.sample_model import SampleFromPoseModel
17
+ from utils.language_utils import (generate_shape_attributes,
18
+ generate_texture_attributes)
19
  from utils.options import dict_to_nonedict, parse
20
  from utils.util import set_random_seed
21
 
22
+ logger = logging.getLogger(__name__)
23
+ logger.setLevel(logging.DEBUG)
24
+ logger.propagate = False
25
+ formatter = logging.Formatter(
26
+ '[%(asctime)s] %(name)s %(levelname)s: %(message)s',
27
+ datefmt='%Y-%m-%d %H:%M:%S')
28
+ handler = logging.StreamHandler(stream=sys.stdout)
29
+ handler.setLevel(logging.DEBUG)
30
+ handler.setFormatter(formatter)
31
+ logger.addHandler(handler)
32
+
33
  COLOR_LIST = [
34
  (0, 0, 0),
35
  (255, 250, 250),
 
59
 
60
 
61
  class Model:
62
+ def __init__(self, device: str):
 
63
  self.config = self._load_config()
64
+ self.config['device'] = device
65
  self._download_models()
66
  self.model = SampleFromPoseModel(self.config)
67
  self.model.batch_size = 1
68
 
69
  def _load_config(self) -> dict:
70
+ path = 'Text2Human/configs/sample_from_pose.yml'
71
  config = parse(path, is_train=False)
72
  config = dict_to_nonedict(config)
73
  return config
74
 
75
  def _download_models(self) -> None:
76
+ model_dir = pathlib.Path('pretrained_models')
77
  if model_dir.exists():
78
  return
79
+ token = os.getenv('HF_TOKEN')
80
+ path = huggingface_hub.hf_hub_download('hysts/Text2Human',
81
+ 'orig/pretrained_models.zip',
82
+ use_auth_token=token)
83
  model_dir.mkdir()
84
  with zipfile.ZipFile(path) as f:
85
  f.extractall(model_dir)
86
 
87
  @staticmethod
88
  def preprocess_pose_image(image: PIL.Image.Image) -> torch.Tensor:
89
+ logger.debug(f'{image.size=}')
90
+ image = np.array(
91
+ image.resize(
92
+ size=(256, 512),
93
+ resample=PIL.Image.Resampling.LANCZOS))[:, :, 2:].transpose(
94
+ 2, 0, 1).astype(np.float32)
95
+ image = image / 12. - 1
96
  data = torch.from_numpy(image).unsqueeze(1)
97
  return data
98
 
99
  @staticmethod
100
  def process_mask(mask: np.ndarray) -> np.ndarray:
101
+ logger.debug(f'{mask.shape=}')
102
  if mask.shape != (512, 256, 3):
103
  return None
104
+ colors = np.unique(mask.reshape(-1, 3), axis=0)
105
+ colors = set(map(tuple, colors.tolist()))
106
+ logger.debug(f'{colors=}')
107
+ logger.debug(f'{colors - set(COLOR_LIST)=}')
108
+
109
  seg_map = np.full(mask.shape[:-1], -1)
110
  for index, color in enumerate(COLOR_LIST):
111
  seg_map[np.sum(mask == color, axis=2) == 3] = index
 
128
  self.model.feed_pose_data(data)
129
  return data
130
 
131
+ def generate_label_image(self, pose_data: torch.Tensor,
132
+ shape_text: str) -> np.ndarray:
133
  if pose_data is None:
134
  return
135
+ logger.debug(f'{len(shape_text)=}')
136
  self.model.feed_pose_data(pose_data)
137
  shape_attributes = generate_shape_attributes(shape_text)
138
  shape_attributes = torch.LongTensor(shape_attributes).unsqueeze(0)
 
142
  colored_segm = self.model.palette_result(self.model.segm[0].cpu())
143
  return colored_segm
144
 
145
+ def generate_human(self, label_image: np.ndarray, texture_text: str,
146
+ sample_steps: int, seed: int) -> np.ndarray:
147
  if label_image is None:
148
  return
149
+ logger.debug(f'{len(texture_text)=}')
150
+ logger.debug(f'{sample_steps=}')
151
  mask = label_image.copy()
152
  seg_map = self.process_mask(mask)
153
  if seg_map is None:
154
  return
155
+ self.model.segm = torch.from_numpy(seg_map).unsqueeze(0).unsqueeze(
156
+ 0).to(self.model.device)
157
  self.model.generate_quantized_segm()
158
 
159
  set_random_seed(seed)
pose_images/000.png CHANGED

Git LFS Details

  • SHA256: 3de0dcff0651ff0667b844f58a42b4c6537c86ae0cdac32068c060f5a471832e
  • Pointer size: 130 Bytes
  • Size of remote file: 47.8 kB

Git LFS Details

  • SHA256: 1909683d4f0f9d6343924da56b340789b21108cb8fdbf8030922bf31caa96ccb
  • Pointer size: 131 Bytes
  • Size of remote file: 127 kB
pose_images/001.png CHANGED

Git LFS Details

  • SHA256: 83f059e8281483a1c8848c9e190813f2e4eb56b0bfa866cf004e87f019ef4d2c
  • Pointer size: 130 Bytes
  • Size of remote file: 48.7 kB

Git LFS Details

  • SHA256: 35b68667f2f2eb5a287ffede8e496e9db920be78871fda73b24598ed0f85dcc4
  • Pointer size: 131 Bytes
  • Size of remote file: 135 kB
pose_images/002.png CHANGED

Git LFS Details

  • SHA256: 0fe37d3d227a61259faa032f7430c95fb1162758545d02e1f4c6bd4cd2bc99fc
  • Pointer size: 130 Bytes
  • Size of remote file: 43.4 kB

Git LFS Details

  • SHA256: e109163ba1ebfe4c3323ac700e1e6dd9443d5d3cf7e468a3587de7fc40383fa8
  • Pointer size: 131 Bytes
  • Size of remote file: 116 kB
pose_images/003.png CHANGED

Git LFS Details

  • SHA256: 83f059e8281483a1c8848c9e190813f2e4eb56b0bfa866cf004e87f019ef4d2c
  • Pointer size: 130 Bytes
  • Size of remote file: 48.7 kB

Git LFS Details

  • SHA256: 35b68667f2f2eb5a287ffede8e496e9db920be78871fda73b24598ed0f85dcc4
  • Pointer size: 131 Bytes
  • Size of remote file: 135 kB
pose_images/004.png CHANGED

Git LFS Details

  • SHA256: 43a71489b88a0bfb8c3a035f62599534cdd6df7b2adb188be4da351819709de1
  • Pointer size: 130 Bytes
  • Size of remote file: 45.8 kB

Git LFS Details

  • SHA256: de2aa00f09620cd8c33e722d1eab610ea99cd473d5ce4541275e04ab5e642d99
  • Pointer size: 131 Bytes
  • Size of remote file: 122 kB
pose_images/005.png CHANGED

Git LFS Details

  • SHA256: 9bd8833ace00dd3c97eb858e5b87d6803e0611fd718234699329bad7e4f906f1
  • Pointer size: 130 Bytes
  • Size of remote file: 45.7 kB

Git LFS Details

  • SHA256: 69f6511b2e9a50c77650bd796ccf144d3c5dc12dda84ba899b6e5beb8de052de
  • Pointer size: 131 Bytes
  • Size of remote file: 137 kB
requirements.txt CHANGED
@@ -1,12 +1,11 @@
1
- einops==0.6.1
2
  lpips==0.1.4
3
  mmcv-full==1.5.2
4
  mmsegmentation==0.24.1
5
- numpy==1.23.5
6
- openmim==0.1.5
7
- Pillow==9.5.0
8
- sentence-transformers==2.2.2
9
- tokenizers==0.13.3
10
  torch==1.11.0
11
  torchvision==0.12.0
12
- transformers==4.30.2
 
1
+ einops==0.4.1
2
  lpips==0.1.4
3
  mmcv-full==1.5.2
4
  mmsegmentation==0.24.1
5
+ numpy==1.22.3
6
+ Pillow==9.1.1
7
+ sentence-transformers==2.2.0
8
+ tokenizers==0.12.1
 
9
  torch==1.11.0
10
  torchvision==0.12.0
11
+ transformers==4.19.2
style.css CHANGED
@@ -1,10 +1,16 @@
1
  h1 {
2
  text-align: center;
3
- display: block;
4
  }
5
  #input-image {
6
  max-height: 300px;
7
  }
8
  #label-image {
9
- max-height: 300px;
 
 
 
 
 
 
 
10
  }
 
1
  h1 {
2
  text-align: center;
 
3
  }
4
  #input-image {
5
  max-height: 300px;
6
  }
7
  #label-image {
8
+ height: 300px;
9
+ }
10
+ #result-image {
11
+ height: 300px;
12
+ }
13
+ img#visitor-badge {
14
+ display: block;
15
+ margin: auto;
16
  }