File size: 12,392 Bytes
8a0cdd8
 
dde4764
0db692a
55d6080
 
0db692a
05dbca8
dde4764
 
0db692a
dde4764
 
 
 
 
 
 
 
 
 
 
0db692a
dde4764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da4e402
e5449c2
55d6080
dde4764
0db692a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737c21b
0db692a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737c21b
0db692a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2cf089
 
 
 
 
 
 
 
 
 
 
ad0b84b
 
 
 
 
 
 
 
 
a9b6a0e
 
 
 
 
 
 
ad0b84b
0db692a
 
 
 
bd5c59c
 
 
 
 
0db692a
 
 
 
 
 
 
bd5c59c
 
 
 
0db692a
 
 
 
737c21b
0db692a
 
 
 
 
 
 
737c21b
0db692a
 
 
 
 
 
 
 
737c21b
0db692a
 
 
 
 
 
 
 
 
 
 
737c21b
0db692a
 
 
 
 
 
 
 
 
 
 
737c21b
0db692a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05dbca8
26a59c8
05dbca8
26a59c8
05dbca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0db692a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
from langchain_core.tools import tool as langchain_tool
from smolagents.tools import Tool, tool
from datetime import datetime
from typing import Literal, List, Union
from smolagents import VisitWebpageTool
from langchain_community.tools.tavily_search import TavilySearchResults
import pandas as pd
import os

@tool
def get_current_time(timezone: str = "America/New_York", format: str = "%Y-%m-%d %H:%M:%S")->str:
    """
    Get the current time
    Args:
        timezone: The timezone to get the current time in. Example: "America/New_York"
        format: The format to return the current time in. Example: "%Y-%m-%d %H:%M:%S"
    Returns:
        The current time
    """
    return datetime.now(timezone).strftime(format)
           
@tool
def sort_list(my_list: List[int], order: Literal["asc", "desc", "alphabetize", "alphabetize_reverse"])->List[int]:
    """
    Sort a list in ascending or descending order if the list contains numbers. 
    Sort it in alphabetically or alphabetically in reverse order if the list contains strings or mixed types.
    
    Args:
        my_list: The list to sort
        order: The order to sort the list in. Must be one of the following:
            - "asc": Sort the list in ascending order. Only for lists containing numbers.
            - "desc": Sort the list in descending order. Only for lists containing numbers.
            - "alphabetize": Sort the list alphabetically. Only for lists containing strings or mixed types.
            - "alphabetize_reverse": Sort the list alphabetically in reverse order. Only for lists containing strings or mixed types.
        
    Returns:
        The sorted list
    """
    if not isinstance(my_list, List):
        raise ValueError("my_list must be a list")
    else:
        if all(isinstance(item, (int, float)) for item in my_list):
            if order in ["asc", "desc"]:
                return sorted(my_list, reverse=order == "desc")
            elif order in ["alphabetize", "alphabetize_reverse"]:
                how = {
                    "alphabetize": "asc",
                    "alphabetize_reverse": "desc"
                }
                return sorted(my_list, key=lambda x: str(x), reverse=how[order] == "desc")
            else:
                raise ValueError("order must be one of the following: asc, desc, alphabetize, alphabetize_reverse")
        else:
            print("This is a mixed list. Converting and sorting alphabetically.")
            my_list = [str(item) for item in my_list]
            how = {
                "alphabetize": "asc",
                "alphabetize_reverse": "desc"
            }
            return sorted(my_list, reverse=how[order] == "desc")
            
#smolagents tools
# visit_webpage_tool = VisitWebpageTool()
tavily_search_tool = Tool.from_langchain(TavilySearchResults(k=3))


@tool
def operate_two_numbers(num1: float, num2: float, operation: Literal["add", "subtract", "multiply", "divide", "power", "modulo"], decimal_places: int = 2)->float:
    """
    Operate on two numbers
    Args:
        num1: The first number to operate on. Must be a float.
        num2: The second number to operate on. Must be a float.
        operation: The operation to perform. Must be one of the following:
            - "add": Add the two numbers
            - "subtract": Subtract the two numbers
            - "multiply": Multiply the two numbers
            - "divide": Divide the two numbers
            - "power": Raise the first number to the power of the second number
            - "modulo": Return the remainder of the division of the first number by the second number
        decimal_places: The number of decimal places to round the result to. Default is 2.
    Returns:
        The result of the operation
    """
    if operation == "add":
        return round(num1 + num2, decimal_places)
    elif operation == "subtract":
        return round(num1 - num2, decimal_places)
    elif operation == "multiply":
        return round(num1 * num2, decimal_places)
    elif operation == "divide":
        return round(num1 / num2, decimal_places)
    elif operation == "power":
        return round(num1 ** num2, decimal_places)
    elif operation == "modulo":
        return round(num1 % num2, decimal_places)
    else:
        raise ValueError("operation must be one of the following: add, subtract, multiply, divide, power, modulo")

@tool
def convert_number(orig_num: any, operation: Literal["to_base", "type_cast"], new_base: Literal["binary", "octal", "hexadecimal", "int", "float"], decimal_places: int = 2)->any:
    """
    Convert a number to a new base
    Args:
        orig_num: The number to convert. Must be a float or int.
        operation: The operation to perform. Must be one of the following:
            - "to_base": Convert the number to a new base.
            - "type_cast": Convert the number to a new type.
        new_base: The new base to convert the number to. Must be one of the following:
            - "binary": Convert the number to binary.
            - "octal": Convert the number to octal.
            - "hexadecimal": Convert the number to hexadecimal.
            - "int": Convert the number to an int.
            - "float": Convert the number to a float.
        decimal_places: The number of decimal places to round the result to. Default is 2. Only used if operation is "type_cast" and new_base is "float".
    Returns:
        The converted number. Can be float or int or str.
    """
    if operation == "to_base":
        if new_base == "binary":
            return bin(orig_num)
        elif new_base == "octal":
            return oct(orig_num)
        elif new_base == "hexadecimal":
            return hex(orig_num)
        else:
            raise ValueError("new_base must be one of the following: binary, octal, hexadecimal, int, float")
    elif operation == "type_cast":
        if new_base == "int":
            return int(orig_num)
        elif new_base == "float":
            return round(float(orig_num), decimal_places)
        else:
            raise ValueError("new_base must be one of the following: int, float")
    else:
        raise ValueError("operation must be one of the following: to_base, type_cast")

@tool
def load_dataframe_from_csv(file_path: str)->pd.DataFrame:
    """
    Load a pandas DataFrame from a CSV file
    Args:
        file_path: The path to the CSV file to load.
    Returns:
        The pandas DataFrame
    """
    return pd.read_csv(file_path)

@tool
def load_dataframe_from_excel(file_path: str)->pd.DataFrame:
    """
    Load a pandas DataFrame from an Excel file
    Args:
        file_path: The path to the Excel file to load.
    Returns:
        The pandas DataFrame
    """
    try:
        df = pd.read_excel(file_path)
    except Exception as e:
        curr_dir = os.path.dirname(os.path.abspath(__file__))
        file_path = os.path.join(curr_dir, file_path)
        df = pd.read_excel(file_path)
    return df

@tool
def to_dataframe(data: List[dict], columns: List[str])->pd.DataFrame:
    """
    Convert a list of dictionaries to a pandas DataFrame
    Args:
        data: The list of dictionaries to convert to a pandas DataFrame.
        columns: The columns of the pandas DataFrame.
    Returns:
        The pandas DataFrame
    """
    return pd.DataFrame(data, columns=columns)

@tool
def to_json(data: pd.DataFrame)->str:
    """
    Convert a pandas DataFrame to a JSON string
    Args:
        data: The pandas DataFrame to convert to a JSON string.
    Returns:
        The JSON string
    """
    return data.to_json(orient="records")

@tool
def get_dataframe_data(data: pd.DataFrame, column: any, row: any)->any:
    """
    Get a specific cell from a pandas DataFrame
    Args:
        data: The pandas DataFrame to get the data from.
        column: The column to get the data from. Must be a string or int. If int then it is the index of the column.
        row: The row to get the data from. Must be a string or int. If int then it is the index of the row.
    Returns:
        The data from the specified cell. Can be float or int or str.
    """
    if isinstance(column, int):
        column = data.iloc[:, column]
    if isinstance(row, int):
        row = data.iloc[row, :]
    return data.loc[row, column]

@tool
def get_dataframe_column(data: pd.DataFrame, column: any)->pd.Series:
    """
    Get a specific column from a pandas DataFrame
    Args:
        data: The pandas DataFrame to get the column from.
        column: The column to get the data from. Must be a string or int. If int then it is the index of the column.
    Returns:
        The data from the specified column
    """
    return data.iloc[:, column]

@tool
def get_dataframe_row(data: pd.DataFrame, row: any)->pd.Series:
    """
    Get a specific row from a pandas DataFrame
    Args:
        data: The pandas DataFrame to get the row from.
        row: The row to get the data from. Must be a string or int. If int then it is the index of the row.
    Returns:
        The data from the specified row
    """
    return data.iloc[row, :]

@tool 
def get_dataframe_groupby(data: pd.DataFrame, column: any, operation: Literal["mean", "sum", "count", "min", "max", "median", "std", "var"])->pd.DataFrame:
    """
    Group a pandas DataFrame by a specific column and perform an operation on the grouped data
    Args:
        data: The pandas DataFrame to group.
        column: The column to group the data by.
        operation: The operation to perform on the grouped data. Must be one of the following:
            - "mean": Calculate the mean of the grouped data.
            - "sum": Calculate the sum of the grouped data.
            - "count": Count the number of rows in the grouped data.
            - "min": Calculate the minimum of the grouped data.
            - "max": Calculate the maximum of the grouped data.
            - "median": Calculate the median of the grouped data.
            - "std": Calculate the standard deviation of the grouped data.
            - "var": Calculate the variance of the grouped data.
    Returns:
        The grouped data
    """
    if operation == "mean":
        return data.groupby(column).mean()
    elif operation == "sum":
        return data.groupby(column).sum()
    elif operation == "count":
        return data.groupby(column).count()
    elif operation == "min":
        return data.groupby(column).min()
    elif operation == "max":
        return data.groupby(column).max()
    elif operation == "median":
        return data.groupby(column).median()
    elif operation == "std":
        return data.groupby(column).std()
    elif operation == "var":
        return data.groupby(column).var()
    else:
        raise ValueError("operation must be one of the following: mean, sum, count, min, max, median, std, var")
    
@tool
def read_python_file_from_path(file_path: str) -> str:
    """
    Read and return the contents of a Python file from a given path.
    Args:
        file_path: Path to the Python file to read
    Returns:
        str: Contents of the Python file
    """
    try:
        # Check if file exists
        # if not os.path.exists(file_path):
        #     raise FileNotFoundError(f"File not found: {file_path}")
            
        # Check if it's a Python file
        if not file_path.endswith('.py'):
            raise ValueError(f"File is not a Python file: {file_path}")
            
        # Try reading with absolute path first
        try:
            with open(file_path, 'r', encoding='utf-8') as f:
                return f.read()
        except Exception as e:
            print(f"Failed to read with absolute path: {str(e)}")
            
            # Try with adjusted path
            current_file_path = os.path.abspath(__file__)
            current_file_dir = os.path.dirname(current_file_path)
            adjusted_path = os.path.join(current_file_dir, file_path)
            
            print(f"Trying adjusted path: {adjusted_path}")
            # if not os.path.exists(adjusted_path):
            #     raise FileNotFoundError(f"File not found at either {file_path} or {adjusted_path}")
                
            with open(adjusted_path, 'r', encoding='utf-8') as f:
                return f.read()
                
    except Exception as e:
        raise RuntimeError(f"Error reading Python file: {str(e)}")