Spaces:
Sleeping
Sleeping
File size: 19,680 Bytes
10e9b7d eccf8e4 3c4371f 97f889e 1a04a88 30ffa0e 97f889e e9af7ec 146fc91 10e9b7d d59f015 e80aab9 3db6293 e80aab9 31243f4 d59f015 97f889e 31243f4 1a04a88 7ed0a6c 1a04a88 31243f4 1a04a88 f864d65 7d82e4f 8ed7d27 1a04a88 97f889e 1a04a88 7d82e4f 8ed7d27 7d82e4f 8ed7d27 1a04a88 7d82e4f 8ed7d27 7d82e4f 333a8cc 7d82e4f 1a04a88 97f889e 1a04a88 4021bf3 e9af7ec 1a04a88 e9af7ec 0390a00 146fc91 c058184 146fc91 0390a00 146fc91 0390a00 146fc91 0390a00 146fc91 c058184 146fc91 c058184 146fc91 8ed7d27 e9af7ec 0390a00 e9af7ec 0390a00 e9af7ec a6b9f81 e9af7ec 0390a00 e9af7ec c058184 e9af7ec 82d0896 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 0db692a 7d65c66 31243f4 e80aab9 b177367 7d65c66 68c76ae 3c4371f d812eb3 31243f4 30ffa0e 31243f4 1cb8f4e fd1aa45 68c76ae fd1aa45 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 97f889e e9af7ec 97f889e 31243f4 0db692a e80aab9 0db692a 7021ba9 e9af7ec 0db692a 7021ba9 e9af7ec 0db692a 7021ba9 e9af7ec 0db692a 7021ba9 e9af7ec 0db692a 7021ba9 e9af7ec 0db692a e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
import os
import gradio as gr
import requests
import pandas as pd
import datasets
from mini_agents import MasterAgentWrapper
from utils import get_full_file_path
from smolagents.memory import ActionStep, PlanningStep, TaskStep, SystemPromptStep, FinalAnswerStep
from typing import Optional
import numpy as np
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
columns = [
'task_id',
'step_class',
# Common attributes (from MemoryStep base class)
'model_input_messages',
'tool_calls',
'start_time',
'end_time',
'step_number',
'error',
'duration',
'model_output_message',
'model_output',
'observations',
'observations_images',
'action_output',
# PlanningStep attributes
'plan',
# TaskStep attributes
'task',
'task_images',
# SystemPromptStep attributes
'system_prompt',
# FinalAnswerStep attributes
'final_answer'
]
class BasicAgent:
def __init__(self):
self.agent = MasterAgentWrapper() # This is now the MasterAgentWrapper instance
print("Master Agent initialized.")
def __call__(self, question: str, task_id: str, df_agent_steps: pd.DataFrame) -> tuple[str, pd.DataFrame]:
print(f"Agent received question (first 50 chars): {question[:50]}...")
try:
# Use the wrapper's run method which handles browser tools safely
fixed_answer = self.agent.run(question)
# Log steps
all_steps = self.agent.master_agent.memory.steps
new_rows = [] # List to store new rows
def serialize_value(value):
"""Convert complex objects to serializable format"""
if hasattr(value, 'dict'):
return value.dict()
elif hasattr(value, '__dict__'):
return str(value.__dict__)
elif isinstance(value, (list, tuple)):
return [serialize_value(item) for item in value]
elif isinstance(value, dict):
return {k: serialize_value(v) for k, v in value.items()}
return value
for step in all_steps:
if isinstance(step, ActionStep):
step_class = "ActionStep"
elif isinstance(step, PlanningStep):
step_class = "PlanningStep"
elif isinstance(step, TaskStep):
step_class = "TaskStep"
elif isinstance(step, SystemPromptStep):
step_class = "SystemPromptStep"
elif isinstance(step, FinalAnswerStep):
step_class = "FinalAnswerStep"
else:
step_class = "UnknownStep"
step_dict = step.dict()
# Create a new row with default None values
new_row = {col: "None" for col in df_agent_steps.columns}
# Update with actual values
new_row['task_id'] = task_id
new_row['step_class'] = step_class
# Serialize complex objects before adding to DataFrame
for key, value in step_dict.items():
if key in df_agent_steps.columns:
try:
new_row[key] = serialize_value(value)
except Exception as e:
print(f"Warning: Could not serialize {key}, using string representation: {e}")
new_row[key] = str(value)
new_rows.append(new_row)
# Append all new rows at once
final_row = {
'task_id': task_id,
'step_class': 'FinalAnswerStep',
'model_input_messages': [question],
'model_output_message': fixed_answer,
'model_output': fixed_answer,
}
new_rows.append(final_row)
if new_rows:
df_agent_steps = pd.concat([df_agent_steps, pd.DataFrame(new_rows)], ignore_index=True)
print(f"Agent returning fixed answer: {fixed_answer}")
return fixed_answer, df_agent_steps
except Exception as e:
print(f"Error in agent execution: {e}")
raise
def check_required_env_vars() -> tuple[bool, Optional[str]]:
"""Check if required environment variables are set"""
missing_vars = []
# Check HF_TOKEN
if not os.getenv("HUGGINGFACE_API_KEY"):
missing_vars.append("HUGGINGFACE_API_KEY")
# Check SPACE_ID (only warn, not required)
if not os.getenv("SPACE_ID"):
print("⚠️ SPACE_ID not set - this is normal when running locally")
if missing_vars:
return False, f"Missing required environment variables: {', '.join(missing_vars)}"
return True, None
def save_dataset_to_hub(df: pd.DataFrame, dataset_name: str) -> tuple[bool, str]:
"""Save DataFrame to Hugging Face dataset with proper error handling"""
# Check environment variables
env_ok, env_error = check_required_env_vars()
if not env_ok:
return False, f"Cannot save dataset: {env_error}"
try:
if len(df) == 0:
return False, "Cannot save empty dataset"
print(f"Saving {len(df)} steps to {dataset_name}...")
# Create a copy of the DataFrame to avoid modifying the original
df_to_save = df.copy()
def is_none_or_nan(x):
"""Safely check if a value is None or NaN"""
if x is None:
return True
if isinstance(x, (float, np.floating)) and np.isnan(x):
return True
if x == "None" or x == "nan" or x == "NaN":
return True
return False
def ensure_consistent_type(x, column_name):
"""Ensure consistent type within a column"""
try:
if is_none_or_nan(x):
return None
# Special handling for model_input_messages and similar columns
if column_name in ['model_input_messages', 'model_output_message', 'tool_calls']:
if isinstance(x, (list, tuple, np.ndarray)):
# Convert each item in the array/list to string
return str([str(item) if not is_none_or_nan(item) else None for item in x])
if isinstance(x, dict):
return str(x)
if hasattr(x, 'dict'):
return str(x.dict())
if hasattr(x, '__dict__'):
return str(x.__dict__)
return str(x)
# For other columns, convert to string
if isinstance(x, (list, tuple, np.ndarray)):
return str(x.tolist() if hasattr(x, 'tolist') else list(x))
if isinstance(x, dict):
return str(x)
if hasattr(x, 'dict'):
return str(x.dict())
if hasattr(x, '__dict__'):
return str(x.__dict__)
return str(x)
except Exception as e:
print(f"Warning: Error converting value in column {column_name}: {str(e)}")
return str(x) if not is_none_or_nan(x) else None
# Convert all columns to consistent types
for col in df_to_save.columns:
print(f"Converting column: {col}")
try:
# Handle numpy arrays and pandas series
if isinstance(df_to_save[col], (np.ndarray, pd.Series)):
# Convert None/NaN to None, everything else to string
df_to_save[col] = df_to_save[col].apply(lambda x: None if is_none_or_nan(x) else str(x))
else:
df_to_save[col] = df_to_save[col].apply(lambda x: ensure_consistent_type(x, col))
# Verify column type consistency
sample_values = df_to_save[col].dropna().head()
if not sample_values.empty:
print(f"Sample values for {col}: {sample_values.iloc[0]}")
except Exception as e:
print(f"Warning: Error processing column {col}: {str(e)}")
# If there's an error, try to convert the entire column to string
df_to_save[col] = df_to_save[col].apply(lambda x: None if is_none_or_nan(x) else str(x))
# Convert to dataset
dataset = datasets.Dataset.from_pandas(df_to_save)
# Add metadata with explicit string types for all columns
dataset.info.description = "Agent steps data from evaluation run"
# Save to hub with token
dataset.push_to_hub(
dataset_name,
private=True,
token=os.getenv("HUGGINGFACE_WRITE_API_KEY")
)
return True, f"Successfully saved {len(df_to_save)} steps to {dataset_name}"
except Exception as e:
error_msg = f"Error saving dataset: {str(e)}"
print(error_msg)
# Print more detailed error information
if hasattr(e, '__cause__') and e.__cause__:
print(f"Caused by: {str(e.__cause__)}")
return False, error_msg
def run_and_submit_all( profile: gr.OAuthProfile | None, mock_submission: bool = False):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
df_agent_steps = pd.DataFrame(columns=columns)
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
file_path = get_full_file_path(task_id)
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
if "youtube" in question_text.lower() and "bird" in question_text.lower():
continue
try:
if file_path:
question_text = question_text + f"\n\nHere is also the path to the file for the task (file name matches with task ID and is not in plain English): {file_path}"
submitted_answer, df_agent_steps = agent(question_text, task_id, df_agent_steps)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Save steps data to huggingface dataset
print("\nSaving agent steps to Hugging Face dataset...")
success, message = save_dataset_to_hub(df_agent_steps, "huytofu92/agent_steps_huggingface_course_unit4")
if success:
print(message)
else:
print(f"⚠️ {message}")
print("Continuing with submission despite dataset save failure...")
# 6. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
if mock_submission:
answer_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"])
answer_df.to_csv("answers.csv", index=False)
return "Answers saved to answers.csv", answer_df
else:
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"])
print(results_df[["Task ID", "Submitted Answer"]].head(20))
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"])
print(results_df[["Task ID", "Submitted Answer"]].head(20))
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"])
print(results_df[["Task ID", "Submitted Answer"]].head(20))
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"])
print(results_df[["Task ID", "Submitted Answer"]].head(20))
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"])
print(results_df[["Task ID", "Submitted Answer"]].head(20))
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |