File size: 19,680 Bytes
10e9b7d
 
eccf8e4
3c4371f
97f889e
1a04a88
30ffa0e
97f889e
e9af7ec
146fc91
10e9b7d
d59f015
e80aab9
3db6293
e80aab9
31243f4
d59f015
97f889e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
 
1a04a88
7ed0a6c
1a04a88
 
31243f4
1a04a88
 
 
 
 
f864d65
7d82e4f
 
8ed7d27
 
 
 
 
 
 
 
 
 
 
 
1a04a88
 
 
 
 
 
 
 
 
 
 
 
 
97f889e
1a04a88
7d82e4f
8ed7d27
7d82e4f
 
 
8ed7d27
 
1a04a88
7d82e4f
8ed7d27
 
 
 
 
 
7d82e4f
 
 
333a8cc
 
 
 
 
 
 
 
7d82e4f
 
1a04a88
 
 
97f889e
1a04a88
 
 
4021bf3
e9af7ec
 
 
 
 
1a04a88
 
e9af7ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0390a00
 
 
146fc91
 
 
 
 
 
 
 
 
 
c058184
 
146fc91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0390a00
146fc91
0390a00
146fc91
0390a00
146fc91
c058184
146fc91
 
 
c058184
 
 
 
146fc91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed7d27
e9af7ec
0390a00
e9af7ec
0390a00
e9af7ec
 
 
 
 
a6b9f81
e9af7ec
 
0390a00
e9af7ec
 
 
 
c058184
 
 
e9af7ec
 
82d0896
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
 
 
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
0db692a
 
 
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
68c76ae
3c4371f
d812eb3
31243f4
 
30ffa0e
31243f4
 
 
1cb8f4e
 
fd1aa45
 
 
68c76ae
fd1aa45
 
 
 
 
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
97f889e
e9af7ec
 
 
 
 
 
 
 
97f889e
31243f4
0db692a
 
 
 
 
e80aab9
0db692a
 
 
 
 
 
 
 
 
 
 
7021ba9
e9af7ec
0db692a
 
 
 
 
 
 
 
 
 
7021ba9
e9af7ec
0db692a
 
 
 
7021ba9
e9af7ec
0db692a
 
 
 
7021ba9
e9af7ec
0db692a
 
 
 
7021ba9
e9af7ec
0db692a
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import os
import gradio as gr
import requests
import pandas as pd
import datasets
from mini_agents import MasterAgentWrapper
from utils import get_full_file_path
from smolagents.memory import ActionStep, PlanningStep, TaskStep, SystemPromptStep, FinalAnswerStep
from typing import Optional
import numpy as np

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
columns = [
    'task_id',
    'step_class',
    # Common attributes (from MemoryStep base class)
    'model_input_messages',
    'tool_calls',
    'start_time',
    'end_time',
    'step_number',
    'error',
    'duration',
    'model_output_message',
    'model_output',
    'observations',
    'observations_images',
    'action_output',
    # PlanningStep attributes
    'plan',
    # TaskStep attributes
    'task',
    'task_images',
    # SystemPromptStep attributes
    'system_prompt',
    # FinalAnswerStep attributes
    'final_answer'
]

class BasicAgent:
    def __init__(self):
        self.agent = MasterAgentWrapper()  # This is now the MasterAgentWrapper instance
        print("Master Agent initialized.")
        
    def __call__(self, question: str, task_id: str, df_agent_steps: pd.DataFrame) -> tuple[str, pd.DataFrame]:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        try:
            # Use the wrapper's run method which handles browser tools safely
            fixed_answer = self.agent.run(question)
            
            # Log steps
            all_steps = self.agent.master_agent.memory.steps
            new_rows = []  # List to store new rows
            
            def serialize_value(value):
                """Convert complex objects to serializable format"""
                if hasattr(value, 'dict'):
                    return value.dict()
                elif hasattr(value, '__dict__'):
                    return str(value.__dict__)
                elif isinstance(value, (list, tuple)):
                    return [serialize_value(item) for item in value]
                elif isinstance(value, dict):
                    return {k: serialize_value(v) for k, v in value.items()}
                return value
            
            for step in all_steps:
                if isinstance(step, ActionStep):
                    step_class = "ActionStep"
                elif isinstance(step, PlanningStep):
                    step_class = "PlanningStep"
                elif isinstance(step, TaskStep):
                    step_class = "TaskStep"
                elif isinstance(step, SystemPromptStep):
                    step_class = "SystemPromptStep"
                elif isinstance(step, FinalAnswerStep):
                    step_class = "FinalAnswerStep"
                else:
                    step_class = "UnknownStep"

                step_dict = step.dict()
                # Create a new row with default None values
                new_row = {col: "None" for col in df_agent_steps.columns}
                # Update with actual values
                new_row['task_id'] = task_id
                new_row['step_class'] = step_class
                
                # Serialize complex objects before adding to DataFrame
                for key, value in step_dict.items():
                    if key in df_agent_steps.columns:
                        try:
                            new_row[key] = serialize_value(value)
                        except Exception as e:
                            print(f"Warning: Could not serialize {key}, using string representation: {e}")
                            new_row[key] = str(value)
                
                new_rows.append(new_row)
            
            # Append all new rows at once
            final_row = {
                'task_id': task_id,
                'step_class': 'FinalAnswerStep',
                'model_input_messages': [question],
                'model_output_message': fixed_answer,
                'model_output': fixed_answer,
            }
            new_rows.append(final_row)
            if new_rows:
                df_agent_steps = pd.concat([df_agent_steps, pd.DataFrame(new_rows)], ignore_index=True)
            
            print(f"Agent returning fixed answer: {fixed_answer}")
            return fixed_answer, df_agent_steps
            
        except Exception as e:
            print(f"Error in agent execution: {e}")
            raise

def check_required_env_vars() -> tuple[bool, Optional[str]]:
    """Check if required environment variables are set"""
    missing_vars = []
    
    # Check HF_TOKEN
    if not os.getenv("HUGGINGFACE_API_KEY"):
        missing_vars.append("HUGGINGFACE_API_KEY")
    
    # Check SPACE_ID (only warn, not required)
    if not os.getenv("SPACE_ID"):
        print("⚠️  SPACE_ID not set - this is normal when running locally")
    
    if missing_vars:
        return False, f"Missing required environment variables: {', '.join(missing_vars)}"
    return True, None

def save_dataset_to_hub(df: pd.DataFrame, dataset_name: str) -> tuple[bool, str]:
    """Save DataFrame to Hugging Face dataset with proper error handling"""
    # Check environment variables
    env_ok, env_error = check_required_env_vars()
    if not env_ok:
        return False, f"Cannot save dataset: {env_error}"
    
    try:
        if len(df) == 0:
            return False, "Cannot save empty dataset"
            
        print(f"Saving {len(df)} steps to {dataset_name}...")
        
        # Create a copy of the DataFrame to avoid modifying the original
        df_to_save = df.copy()
        
        def is_none_or_nan(x):
            """Safely check if a value is None or NaN"""
            if x is None:
                return True
            if isinstance(x, (float, np.floating)) and np.isnan(x):
                return True
            if x == "None" or x == "nan" or x == "NaN":
                return True
            return False
        
        def ensure_consistent_type(x, column_name):
            """Ensure consistent type within a column"""
            try:
                if is_none_or_nan(x):
                    return None
                    
                # Special handling for model_input_messages and similar columns
                if column_name in ['model_input_messages', 'model_output_message', 'tool_calls']:
                    if isinstance(x, (list, tuple, np.ndarray)):
                        # Convert each item in the array/list to string
                        return str([str(item) if not is_none_or_nan(item) else None for item in x])
                    if isinstance(x, dict):
                        return str(x)
                    if hasattr(x, 'dict'):
                        return str(x.dict())
                    if hasattr(x, '__dict__'):
                        return str(x.__dict__)
                    return str(x)
                    
                # For other columns, convert to string
                if isinstance(x, (list, tuple, np.ndarray)):
                    return str(x.tolist() if hasattr(x, 'tolist') else list(x))
                if isinstance(x, dict):
                    return str(x)
                if hasattr(x, 'dict'):
                    return str(x.dict())
                if hasattr(x, '__dict__'):
                    return str(x.__dict__)
                return str(x)
            except Exception as e:
                print(f"Warning: Error converting value in column {column_name}: {str(e)}")
                return str(x) if not is_none_or_nan(x) else None
        
        # Convert all columns to consistent types
        for col in df_to_save.columns:
            print(f"Converting column: {col}")
            try:
                # Handle numpy arrays and pandas series
                if isinstance(df_to_save[col], (np.ndarray, pd.Series)):
                    # Convert None/NaN to None, everything else to string
                    df_to_save[col] = df_to_save[col].apply(lambda x: None if is_none_or_nan(x) else str(x))
                else:
                    df_to_save[col] = df_to_save[col].apply(lambda x: ensure_consistent_type(x, col))
                
                # Verify column type consistency
                sample_values = df_to_save[col].dropna().head()
                if not sample_values.empty:
                    print(f"Sample values for {col}: {sample_values.iloc[0]}")
            except Exception as e:
                print(f"Warning: Error processing column {col}: {str(e)}")
                # If there's an error, try to convert the entire column to string
                df_to_save[col] = df_to_save[col].apply(lambda x: None if is_none_or_nan(x) else str(x))
        
        # Convert to dataset
        dataset = datasets.Dataset.from_pandas(df_to_save)
        
        # Add metadata with explicit string types for all columns
        dataset.info.description = "Agent steps data from evaluation run"
        # Save to hub with token
        dataset.push_to_hub(
            dataset_name,
            private=True,
            token=os.getenv("HUGGINGFACE_WRITE_API_KEY")
        )
        
        return True, f"Successfully saved {len(df_to_save)} steps to {dataset_name}"
        
    except Exception as e:
        error_msg = f"Error saving dataset: {str(e)}"
        print(error_msg)
        # Print more detailed error information
        if hasattr(e, '__cause__') and e.__cause__:
            print(f"Caused by: {str(e.__cause__)}")
        return False, error_msg

def run_and_submit_all( profile: gr.OAuthProfile | None, mock_submission: bool = False):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    df_agent_steps = pd.DataFrame(columns=columns)
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        file_path = get_full_file_path(task_id)
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        if "youtube" in question_text.lower() and "bird" in question_text.lower():
            continue
        try:
            if file_path:
                question_text = question_text + f"\n\nHere is also the path to the file for the task (file name matches with task ID and is not in plain English): {file_path}"
            submitted_answer, df_agent_steps = agent(question_text, task_id, df_agent_steps)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Save steps data to huggingface dataset
    print("\nSaving agent steps to Hugging Face dataset...")
    success, message = save_dataset_to_hub(df_agent_steps, "huytofu92/agent_steps_huggingface_course_unit4")
    if success:
        print(message)
    else:
        print(f"⚠️  {message}")
        print("Continuing with submission despite dataset save failure...")
    
    # 6. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    if mock_submission:
        answer_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"])
        answer_df.to_csv("answers.csv", index=False)
        return "Answers saved to answers.csv", answer_df
    else:
        try:
            response = requests.post(submit_url, json=submission_data, timeout=60)
            response.raise_for_status()
            result_data = response.json()
            final_status = (
                f"Submission Successful!\n"
                f"User: {result_data.get('username')}\n"
                f"Overall Score: {result_data.get('score', 'N/A')}% "
                f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
                f"Message: {result_data.get('message', 'No message received.')}"
            )
            print("Submission successful.")
            results_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"])
            print(results_df[["Task ID", "Submitted Answer"]].head(20))
            return final_status, results_df
        except requests.exceptions.HTTPError as e:
            error_detail = f"Server responded with status {e.response.status_code}."
            try:
                error_json = e.response.json()
                error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
            except requests.exceptions.JSONDecodeError:
                error_detail += f" Response: {e.response.text[:500]}"
            status_message = f"Submission Failed: {error_detail}"
            print(status_message)
            results_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"])
            print(results_df[["Task ID", "Submitted Answer"]].head(20))
            return status_message, results_df
        except requests.exceptions.Timeout:
            status_message = "Submission Failed: The request timed out."
            print(status_message)
            results_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"])
            print(results_df[["Task ID", "Submitted Answer"]].head(20))
            return status_message, results_df
        except requests.exceptions.RequestException as e:
            status_message = f"Submission Failed: Network error - {e}"
            print(status_message)
            results_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"])
            print(results_df[["Task ID", "Submitted Answer"]].head(20))
            return status_message, results_df
        except Exception as e:
            status_message = f"An unexpected error occurred during submission: {e}"
            print(status_message)
            results_df = pd.DataFrame(results_log, columns=["Task ID", "Question", "Submitted Answer"])
            print(results_df[["Task ID", "Submitted Answer"]].head(20))
            return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)