File size: 4,424 Bytes
8fbac9e
 
 
 
 
 
2145817
8fbac9e
 
 
 
 
 
 
 
 
 
2145817
 
 
 
 
 
 
 
 
83700f0
 
 
 
 
 
 
 
2145817
 
 
ac86774
 
 
8fbac9e
 
2145817
8fbac9e
 
5cbb0f4
8fbac9e
 
 
 
995510e
8fbac9e
5cbb0f4
ac86774
 
8fbac9e
 
 
 
19d656f
 
 
2145817
8fbac9e
 
 
 
 
 
2145817
 
 
 
8fbac9e
19d656f
 
 
 
8fbac9e
 
 
2145817
5cbb0f4
2145817
 
8fbac9e
a9023d8
8fbac9e
ac86774
 
 
 
 
2145817
ac86774
 
 
8fbac9e
19d656f
8fbac9e
 
2145817
8fbac9e
 
9f9014d
7593627
2145817
83700f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fbac9e
 
075258a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import gradio as gr
import numpy as np
from CLIP.clip import ClipWrapper, saliency_configs
from time import time
from matplotlib import pyplot as plt
import io
from PIL import Image, ImageDraw, ImageFont


def plot_to_png(fig):
    buf = io.BytesIO()
    plt.savefig(buf, format="png")
    buf.seek(0)
    img = np.array(Image.open(buf)).astype(np.uint8)
    return img


def add_text_to_image(
    image: np.ndarray,
    text,
    position,
    color="rgb(255, 255, 255)",
    fontsize=60,
):
    image = Image.fromarray(image)
    draw = ImageDraw.Draw(image)
    draw.text(
        position,
        text,
        fill=color,
        font=ImageFont.truetype(
            "/usr/share/fonts/truetype/lato/Lato-Medium.ttf", fontsize
        ),
    )
    return np.array(image)


def generate_relevancy(
    img: np.array, labels: str, prompt: str, saliency_config: str, subtract_mean: bool
):
    labels = labels.split(",")
    prompts = [prompt]
    img = np.asarray(Image.fromarray(img).resize((244 * 4, 244 * 4)))
    assert img.dtype == np.uint8
    h, w, c = img.shape
    start = time()
    grads = ClipWrapper.get_clip_saliency(
        img=img,
        text_labels=np.array(labels),
        prompts=prompts,
        **saliency_configs[saliency_config](h),
    )[0]
    print("inference took", float(time() - start))
    if subtract_mean:
        grads -= grads.mean(axis=0)
    grads = grads.cpu().numpy()
    vmin = 0.002
    cmap = plt.get_cmap("jet")
    vmax = 0.008

    returns = []
    for label_grad, label in zip(grads, labels):
        fig, ax = plt.subplots(1, 1, figsize=(4, 4))
        ax.axis("off")
        ax.imshow(img)
        grad = np.clip((label_grad - vmin) / (vmax - vmin), a_min=0.0, a_max=1.0)
        colored_grad = cmap(grad)
        grad = 1 - grad
        colored_grad[..., -1] = grad * 0.7
        colored_grad = add_text_to_image(
            (colored_grad * 255).astype(np.uint8), text=label, position=(0, 0)
        )
        colored_grad = colored_grad.astype(float) / 255
        ax.imshow(colored_grad)
        plt.tight_layout(pad=0)
        returns.append(plot_to_png(fig))
        plt.close(fig)
    return returns


iface = gr.Interface(
    title="Semantic Abstraction Multi-scale Relevancy Extractor",
    description="""A demo of [Semantic Abstraction](https://semantic-abstraction.cs.columbia.edu/)'s Multi-Scale Relevancy Extractor. To run GPU inference locally, use the [official codebase release](https://github.com/columbia-ai-robotics/semantic-abstraction).

This relevancy extractor builds heavily on [Chefer et al.'s codebase](https://github.com/hila-chefer/Transformer-MM-Explainability) and [CLIP on Wheels' codebase](https://cow.cs.columbia.edu/).""",
    fn=generate_relevancy,
    cache_examples=True,
    inputs=[
        gr.Image(type="numpy", label="Image"),
        gr.Textbox(label="Labels (comma separated)"),
        gr.Textbox(label="Prompt"),
        gr.Dropdown(
            value="ours",
            choices=["ours", "ours_fast", "chefer_et_al"],
            label="Relevancy Configuration",
        ),
        gr.Checkbox(value=True, label="subtract mean"),
    ],
    outputs=gr.Gallery(label="Relevancy Maps", type="numpy"),
    examples=[
        [
            "https://semantic-abstraction.cs.columbia.edu/downloads/gameroom.png",
            "basketball jersey,nintendo switch,television,ping pong table,vase,fireplace,abstract painting of a vespa,carpet,wall",
            "a photograph of a {} in a home.",
            "ours_fast",
            True,
        ],
        [
            "https://semantic-abstraction.cs.columbia.edu/downloads/livingroom.png",
            "monopoly boardgame set,door knob,sofa,coffee table,plant,carpet,wall",
            "a photograph of a {} in a home.",
            "ours_fast",
            True,
        ],
        [
            "https://semantic-abstraction.cs.columbia.edu/downloads/fireplace.png",
            "fireplace,beige armchair,candle,large indoor plant in a pot,forest painting,cheetah-patterned pillow,floor,carpet,wall",
            "a photograph of a {} in a home.",
            "ours_fast",
            True,
        ],
        [
            "https://semantic-abstraction.cs.columbia.edu/downloads/walle.png",
            "WALL-E,a fire extinguisher",
            "a 3D render of {}.",
            "ours_fast",
            True,
        ],
    ],
)
iface.launch(share=True)
# iface.launch()