Spaces:
Build error
Build error
allow gpu
Browse files- CLIP/clip/__init__.py +1 -1
- app.py +3 -1
- requirements.txt +2 -1
CLIP/clip/__init__.py
CHANGED
@@ -148,7 +148,7 @@ class ClipWrapper:
|
|
148 |
text_labels,
|
149 |
horizontal_flipping=False,
|
150 |
positive_attn_only: bool = False,
|
151 |
-
tile_batch_size=
|
152 |
prompt_batch_size=32,
|
153 |
tile_interpolate_batch_size=16,
|
154 |
**kwargs
|
|
|
148 |
text_labels,
|
149 |
horizontal_flipping=False,
|
150 |
positive_attn_only: bool = False,
|
151 |
+
tile_batch_size=32,
|
152 |
prompt_batch_size=32,
|
153 |
tile_interpolate_batch_size=16,
|
154 |
**kwargs
|
app.py
CHANGED
@@ -43,12 +43,14 @@ def generate_relevancy(
|
|
43 |
img = np.asarray(Image.fromarray(img).resize((244 * 4, 244 * 4)))
|
44 |
assert img.dtype == np.uint8
|
45 |
h, w, c = img.shape
|
|
|
46 |
grads = ClipWrapper.get_clip_saliency(
|
47 |
img=img,
|
48 |
text_labels=np.array(labels),
|
49 |
prompts=prompts,
|
50 |
**saliency_configs[saliency_config](h),
|
51 |
)[0]
|
|
|
52 |
if subtract_mean:
|
53 |
grads -= grads.mean(axis=0)
|
54 |
grads = grads.cpu().numpy()
|
@@ -78,7 +80,7 @@ def generate_relevancy(
|
|
78 |
|
79 |
iface = gr.Interface(
|
80 |
title="Semantic Abstraction Multi-scale Relevancy Extractor",
|
81 |
-
description="""A
|
82 |
|
83 |
This relevancy extractor builds heavily on [Chefer et al.'s codebase](https://github.com/hila-chefer/Transformer-MM-Explainability) and [CLIP on Wheels' codebase](https://cow.cs.columbia.edu/).""",
|
84 |
fn=generate_relevancy,
|
|
|
43 |
img = np.asarray(Image.fromarray(img).resize((244 * 4, 244 * 4)))
|
44 |
assert img.dtype == np.uint8
|
45 |
h, w, c = img.shape
|
46 |
+
start = time()
|
47 |
grads = ClipWrapper.get_clip_saliency(
|
48 |
img=img,
|
49 |
text_labels=np.array(labels),
|
50 |
prompts=prompts,
|
51 |
**saliency_configs[saliency_config](h),
|
52 |
)[0]
|
53 |
+
print("inference took", float(time() - start))
|
54 |
if subtract_mean:
|
55 |
grads -= grads.mean(axis=0)
|
56 |
grads = grads.cpu().numpy()
|
|
|
80 |
|
81 |
iface = gr.Interface(
|
82 |
title="Semantic Abstraction Multi-scale Relevancy Extractor",
|
83 |
+
description="""A demo of [Semantic Abstraction](https://semantic-abstraction.cs.columbia.edu/)'s Multi-Scale Relevancy Extractor. To run GPU inference locally, use the [official codebase release](https://github.com/columbia-ai-robotics/semantic-abstraction).
|
84 |
|
85 |
This relevancy extractor builds heavily on [Chefer et al.'s codebase](https://github.com/hila-chefer/Transformer-MM-Explainability) and [CLIP on Wheels' codebase](https://cow.cs.columbia.edu/).""",
|
86 |
fn=generate_relevancy,
|
requirements.txt
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
ftfy
|
2 |
matplotlib
|
|
|
3 |
torch
|
4 |
-
tqdm
|
5 |
torchvision
|
|
|
6 |
regex
|
7 |
numpy
|
8 |
Pillow
|
|
|
1 |
ftfy
|
2 |
matplotlib
|
3 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
4 |
torch
|
|
|
5 |
torchvision
|
6 |
+
tqdm
|
7 |
regex
|
8 |
numpy
|
9 |
Pillow
|